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PREFACE

Since its founding in 1952, the Advisory Group for Aerospace Research and Development has published, through the
Flight Mechanics Panel, a number of standard texts in the field of flight testing. The original Flight Test Manual was
published in the years 1954 to 1956. The Manual was divided into four volumes: I. Performance, I1. Stability and Control,
Ill. Instrumentation Catalog, and IV. Instrumentation Systems.

As a result of developments in the field of flight test instrumentation, the Flight Test Instrumentation Group of the
Flight Mechanics Panel was established in 1968 to update Volumes Ill and IV of the Flight Test Manual by the publication of

the Flight Test Instrumentation Series, AGARDograph 160. In its published volumes AGARDograph 160 has covered
Si• recent developments in flight test instrumentation.

In 1978, the Flight Mechanics panel decided that further specialist monographs should be published covering aspects
of Volume I and II of the original Flight Test Manual, including the flight testing of aircraft systems. In March 1981, the

Flight Test Techniques Group was established to carry out this task. The monographs of this Series (with the exception of

AG 237 which was separately numbered) are being published as individually numbered volumes of AGARDograph 300. At
the end of each volume of AGARDograph 300 two general Annexes are printed; Annex 1 provides a list of the volumes
published in the Flight Test Instrumentation Series and in the Flight Test Techniques Series. Annex 2 contains a list of

handbooks that are available on a variety of flight test subjects, not necessarily related to the contents of the volume
concerned.

Special thanks and appreciation are extended to Mr F.N.Stoliker (US), who chaired the Group for two years from its

inception in 1981, established the ground rules for the operation of the Group and marked the outlines for future
publications.

In the preparation of the present volume the members of the Flight Test Techniques Group listed below have taken an
I active part. AGARD has been most fortunate in finding these competent people willing to contribute their knowledge and

time in the preparation of this volume.

Bogue, R.K. (editor) NASA/US.
Borek, R.W. NASA/US.
Bothe, H. DFVLR/GE.
Bull, EJ. A & AEE/UK.
Carabelli, R. SAl/IT.
Galan, R.C. CEV/FR.
Lapchine, N. CEV/FR.
Norris, EJ. A & AEE/UK.
Phillips, A.D. AFFTC/US.
Pool, A. NLR/NE.
Van Doom, J.T.M. NLR/NE.

C.E.ADOLPH AFFTC/US
Member, Flight Mechanics Panel
Chairman, Flight Test
Techniques Group.
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MICROPROCESSOR APPLICATIONS IN
AIRBORNE FLIGHT-TEST INSTRUMENTATION

by

M ichael J. Prickett£Naval Ocean Systems Centoer
San Diego, CA 92152-5000

SUMMARY

This A6ARDograph addresses flight-test engineers end flight-test instrumentation engineers interested
in the design of microprocessors into new airborne flight-test equipment.

The author has met with several engineers who are actively participating in aircraft- and
electronic-flight testing at various organizations. Each organization has developed microprocessor-based
instrumentation to solve its unique requirements.

This AGARDograph describes general mi crop roces sor-based , system-design principles and selected,
current microprocessor applicati ons for fli ght test and flight-test instrumentation. It is hoped the
reader will gain some new insights to apply microprocessors to futu re flight-test systems.

1. INTRODUCTION

Since its Introduction in 1971, the microprocessor has been used in a variety of ways to make
electronic systems more cost efficient (e.g.. p rogranmmable calculators, electronic games, automotive
controls, small general-purpose computers, and flight test instrumentation). Because of standardization,
thex microprocessor Integrated circuit can be made inexpensively, and its architecture makes it very
flexible because it functions under program t.ontrol. Integrated-circuit techniques allow several thousand
equivalent transistors to be put onto one chip of semiconductor material, such as silicon or gallium arse-
nide, in high volume at low cost per chip. Silicon is the conmmon substrate material used at present,
while the gall ium-arseni de-semi conductor technology promises a much higher functional speed for future
integrated circuits. The dual feature of low cost with high flexibility has accelerated microprocessor
development and applications.

A microprocessor is a small, monolithic-integrated circuit (often called a 'chip") that processes
digital data under control of a program. In all modern personal and home computers, the central
processing unit (CPU) is a microprocessor that is connected to a number of other units (such as memory, a
disc storage system, a printer, and a keyboard) for use as a general purpose computer. Microprocessors
are, however, also used to execute specific functions within all kinds of digital data systems.
Microprocessors are then equipped with only the memory and the input and output functions required for
that one task and are integrated in the system.

Instrumentation systems that include microprocessors are used in both ground equipment and aboard
test aircraft to support flight-test programs. This AGARDograph focuses on airborne microprocessor-based
systems rather than ground-support systems, and it is these applications of microprocessors in flight-test
Instrumentation systems that are discussed. Microprocessors are increasingly used In the onboard data
acq~uisition systems and in the associated test and display systems. In Section 2, a general discussion is
given of how microprocessors can be effectively used in flight-test instrumentation system applications.
That discussion is based on the block diagram of a typical flight-test data acquisition system. Section 3
address critical system design factors and the tradeoff considerations that must be resolved during the
design process. Section 4 then gives more detailed descriptions of a number of typical flight-test
applications, Section 5 concludes the volume with a compendium of conmmercial microprocessors and support
devices.

1.1 BRIEF HISTORY

The first monolithic-integrated circuit, a phase-shift oscillator, was developed in 1958, and the
first modest integrated circuit became coimmercially available in the early 1960s. (Ref. 1). By the early41970s, several manufacturers were producing various types of digital integrated circuits. As more
functions were designed into the chips, the development costs to produce the initial chips became
relatively high.

It was thought that if a general digital -integrated circuit could be designed so that It could be
programmed by the user for a specific set of requirements, then an architecture or a set of architectures
could be standardized, and the cost of the chip design and development could be umortized over many moreI'units, thereby reducing the cost of each unit. Using this principle, Intel Introduced the first
commercial microprocessor, the 4004, in 1971. The Intel 4040 and 8008 soon followed and in 1974, the
8080. By 1976, several manufacturers were actively supplying microprocessors with large total volumes,
causing the unit cost to be significantly reduced.

The major cost reduction of microprocessors caused a greater volume of chips to be used. By 1980, a
new, more powerful generation, the 16-bit microprocessor, was being produced: Texas Instruments 99UU,
Intel 8086. Zilog Z8000, and the Motorola MC68000. The 16 bit refers to the basic word length of the
microprocessor. The performance and functions of these processors are discussed in Section 3.2, but in
general, these 16-bit processors are faster and perform more functions relative to the earlier B-bit
processors.

.;;c
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By 1984, 32-bit microprocessors were introduced with more functions put on the chip. The Motorola MC
68020 Is an example of the family of 32-bit microprocessors, with emphasis on higher execution speed,
larger address space (4-Gbyte). and more instructions relative to 16-bit MC 68000 chip. The MC 6b020
microprocessor uses the equivalent of approximately 200.000 transistors on an integrated-circuit chip that
is approximately 9.5 mm by 8.9 mm. (Ref. 2).

1.2 FUTURE POSSIBILITIES

The future holds interesting possibilities for the tasks that microprocessors will perform for
flight-test instrumentation. (Refs. 3, 4). As more powerful processors are introduced into airborne
applications, greater amounts of fliuht-test data can be processed to support the required tasks of the
flight-test engineer. His decisions based on this reduced data can be made almost instantaneously so
that each flight hour becomes more effective, and the total flight hours for a given flight-test program
can be reduced. With the promise of high performance, more low-cost microprocessors are being put Into
airborne instrumentation systems each year. These microprocessors can be networked to process data from
several different systems on the aircraft, making the required data available to the flight-test engineer
as the tests are in progress. Future flight testing will become much more comprehensive and cost effec-
tive as these trends continue.

The trend for microprocessors and for Integrated circuit chips in general is to double the chip
complexity each year. This trend has existed since the mid 1960s and will probably continue for several
more years, but at a slightly slower pace. (Refs. 5, 6). The implication of this complexity growth per
chip to airborne flight-test instrumentation is that measurement equipment will be more comprehensive,
smaller, and energy efficient. The functional-performance-per-unit airborne volume is already the
limiting factor for many applications. A given airborne-instrumentation system of today could be reduced
to a fraction of the present volume, weight, and power requirements and still maintain the required
functional performance in the future.

2. GENERAL MICROPROCESSOR APPLICATIONS IN FLIGHT-TEST INSTRUMENTATION

Airborne ricroprocessor-based instrumentation systems for flight testing can be used where flexible,
real-time processing is important. These systems can be grouped into four general elements:

1. airborne sensors;

2. microprocessors and related devices used to control, condition, and store data;

3. data and system status display; and

4. system software.

The block diagram in Figure 1 shows the points where microprocessors are often used in flight-test
data systems. This does not mean that they must be used at all those points. In fact, most of the
microprocessor functions shown in Figure 1 are often still executed by hard-wired electronic cirtuits or
electro-mechanical devices. The advantage of using microprocessors is the versatility they provide. One
microprocessor may use several different programs that can be switched during flight (e.g., a
microprocessor can be used to select different sets of parameters from a digital data stream, depending on
the type of test executed).

2.1 BRIEF APPLICATIONS

Flight-test microprocessor tasks are now being perfornwi in a variety of aircraft: small aircraft
(DEHAVILLAND - 8) (Ref. 7); fighter aircraft (F-15 and F-18) (Ref. 8); and large aircraft (C-141 and
commercial airliners); (Ref. 9). The following are examples of typical -rborne microprocessor-based
projects and the microprocessor that the system uses. More detailed discussions of other selected
applications are presented in Section 4.

a The KC-135 Wingletts Program. The Intel 8085 is used for system control, data entry, and
real-time display of critical flight parameters.

a The F-15 Engine Program. The Intel 8085 is used to interface F-15 engine data to a PCM-serial
data link.

0 AFTI F-111 Program. The Intel 8085 is used to interface the flight control system to a PCM
serial data link.

A series of recently conducted X-29 flight tests illustrates the utility of the microprocessor. A
system based on the Zilog Z-80 microprocessor was used '.o interleave five channels of flight-test data
into a single data stream for PCM telemetry transmission. This single data stream was transmitted in
real-time for detailed analysis via satellite to Grumman Aerospace Corporahion, NY, from the test site at
Edwards Air Force Base, CA. The size and functional capability of the microprocessor-based system made
this feasible.

The applications of microprocessors Indicated in Figure 1. a Microprocessor-based Aircraft
Flight-Test System, will be briefly described. It should be stressed, however, that the use of
microprocessors is not restricted to parts of such large and complicated flight-test systems. Each of the
blocks in Figure I can also be applied separately in smaller systems that are used to resolve problems of
operational aircraft. The many applications of microprocessors in operational systems of aircraft and in
flight-test equipment purchased as a unit (e.g., CRT display units, on-board printers) are not discussed
here.

Y"•4'• , ,.
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Figure 1, Microprocessor-bahed Aircraft FlightaTeat System.

2.2 SENSOR AND BUS CONDITIONING

A general flight-test application requmres that various sensors/transducers be installed throughoutthe test aircraft. These sensors /t randucers convert mechanical parameters (e.g., pressure. liquid flow,
position, acceleration) to proportional electrical voltages and currents. (See Figure 1.) Sensors. S.
producte output voltages and currents that typically must be conditioned (i.e., scaled, averaged,
Calib ratd). Signal conditioning can be accomplished using both digital and analog techniques. -(Ref. 10).

The signal -conditioning functions may be required before or after the sensor signal conversion to a
digital format. System flexibility is substantially enhanced when a microprocessor controls a
signal-conditioning process such as voltage scaling or calibration. A single microprocessor can be
dedicated to a single sensor or can serve several sensors as shown In Figure 1. For reasons of bandwidth
and effective hardware usage, practically all digital flight test systems use time division multiplexing
to share a data stream and/or 3ignal conditioners with several transducers (either digital or analog).
This process can be done (and has been done for many years) by a hardwired program actuating the
multiplexing switches at fixed times determined from a time base. The big advantage of microprocessor
multiplexers is that their sampling rate and the selection of the date can be adjusted even during flight.
A digital multiplexer under the control of ek microprocessor brings the multiplexing process under software
control, which makes format revisions much easier. The sensor conditioning and multiplexing functions may
each require a dedicated microprocessor or, depending on the requirement, may be shared within a single
unit.

In older data acquisition systems all signals were, directly or after preliminary signal
conditioning, transmitted to one central multiplexer. This required a large amount of wiring and,
especially when the signals were analog, serious danger of electric or electro-magnetic interference. In
modern systems, local digitizers and multiplexers produce digital data streams locally. These can be
integrated into larger data streams, so that only a few data streams with many channels of multiplexed
data arrive at the tape recorder, telemetry transmitter, or central onboard data processor. It is often
convenient to use microprocessors for selecting data from data streams. There are two important
applications:

a forming configured data streams. i.e., selecting specific data parameters from an existing
digital data stream and shaping a new data stream with only those data. This is used in systems
where the main data storage is on an onboard magnetic tape recorder, but where selected signals
must be telemeteed to the ground for reasons of safety and/or optimal conduct of the flight
tests. The microprocessor will then select specific parameters from the main data stream
(leaving that intact) and produce a new data stream formatted for the telemetry transmitter.

a extracting specific parameters from a data stream that must be further processed for on-line
presentation on a CRT or onboard printer or for on-line calculations.

1 
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applications are

* (digital) filtering and sampling rate reduction (averaging of several samples measured at a high
sampling rate into lower-rate samples);

* linearizing the calibration of transducer outputs, matching of the outputs of several transducers
of the same type to the same calibration characteristics; and

* transforming the digital output to engineering units.

Each of these three functio;.is can be used separately or in combination. They are used to speed up
the data processing on the ground but ire especially Important when onboard real-time information is
required for displays for the pilots or onboard engineers.

The mi crop rocessor-based system can be networked to other systems via a bus (e.g.. MIL-STD-1553B or
ARINC-429). A microprocessor can condition or buffer the data from the bus to make the data compatible
with the flight-test instrumentation system. Flight-test engineers at Boeing Military Airplane Co., U.S.
Naval Air Test Center, NO, and at other organizations have interfaced their microprocessor-based
flight-test systems to the existing MIL-STD-1553B data bus in the aircraft. (Ref. 11). The ARINC-429
aircraft data bus is another source of flight-test parameters. Instrumentation engineers at NLR, the
Netherlands, and DFVLR, West Germany. have developed microprocessor-based systems to use existing
flight-related data on the ARINC-429 bus. These two systems are discussed in Section 4. By using the
ex isting digital -formatted data, hundreds of flight-test parameters are monitored and rapidly processed
using a microprocessor.

2.3 FLIGHT-TEST SYSTEM AND DISPLAY CONTROL

The microprocessor is very useful for controlling and performing the various processes necessary for
a flight data-monitoring system. The microprocessor can read the conditioned sensor data and aircraft bus
data In the proper order. After the data is read from a number of inputs, calculations are performed in
real time involving only one or several individual parameters. Examples are the calculation of Mach
number from measured static and total pressures, the calculation of the center of gravity of the aircraft
from measured fuel flows from tanks located at different places in the aircraft, the calculation of stall
speed, and the presentation of pressure distributions in engineering units over wing sections from
measured gage pressures. All these calculated values can be presented to the pilots and engineers onboard
the aircraft in real time on-line on a CRT or on an onboard printer. These displays can be switched from
one set of parameters to other sets, whereby each display can be laid out in an ergonomically optimal way.
Another important application of this type is to provide warnings when selected signals exceed or fall
short from predetermined values., Examples of parameters suitable for warning monitoring include turbine
exhaust temperature, stall speed, and center of gravity. This information is often critical to the pilot
or flight-test engineer during real-time flight testing. Flight safety is substantially improved with
critical parameters available in real time.

The microprocessor provides calculated qualities for display in different formats, based on the
requirements of the test program. By using a set of basic microprocessor Instructions, complex tasks can
be defined and software developed to ful fill the application requirements. Software development Is a
significant part of the total system development and should receive no less attention than the hardware.
Software development is further discussed in Section 3.

An example of a microprocessor display is an F-14 cockpit unit developed and used by the Grurmman
Aerospace Corporation, Calverton, N.Y. The Microprocessor Crew Display System (MCDS) was developed to
process and display multiple parameters and to allow the pilot to monitor the selected parameters while
maneuvering the test aircraft. A critical parameter for maneuvering flight is the "g" level to which the
airframe is being subjected. It was learned that normal cockpit "g" meters are not adequate for some
dynamic flight-test maneuvers. Certain structural flight-test maneuvers performed by the pilot caused "g"
levels to be exceeded by significant margins. This problem was resolved by using the microprocessor-based
MCDS together with special accelerometer sensors to monitor, process, and display the aircraft u"g forces
in real-time to the pilot. The high-resolution display includes an amber caution light that Indicates
when a pilot is close to the flight-test envelope. The caution-light threshold is selected based on the
maneuver. (Ref. 12).

2.4 SENSOR CALIBRATION

A number of flight-test organizations use microprocessor signal conditioning to calibrate a sonsor or
group of sensors without removing them from the instrumentation system (sometimes termed "in-situ"
calibration). Two general methods accomplish the calibration, one uses a priori information about the
sensor and the other develops the calibration data during the test sequence-.

* The first method compensates the offset and nonlinearity of various sensors with a table look-up
approach. The table is implemented with a read-only memory (ROM) and controlled by a microprocessor. See
Figure 2. The data table with the ROM is developed for the unique output characteristics of each sensor
(obtained from the manufacturer or by testing the sensor). Once the RON is progranmed, the microprocessor
compensates the sensor's output based on the initial sensor chairacteristics. This is the static
calibration method, since the compensation data is constant with time.

* Hewever, the sensor-output characteristics may change as a function of time and environmental condi-
tions. This requires the second method, dynamic sensor calibration, a process performed frequently during
the test process with the sensor In place within the instrumentation system. During the test process, the
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Figure 2. Senvor calibation with incroproceaaor.

signal-conditioning microprocessor Is programmed to initiate known inputs to the sensor at various ampli-
t',de levels. The sensor's response to each of these known inputs is measured and stored by the micropro-
cessor over the entire parameter-amplitude range. The difference between the known input and the output
response is the error data. The error data may be changed and rewritten into memory using an electrically
erasable programmable ROM (EEPROM). This dynamic calibration routine can be programmed into the micro-
Processor memory to be transparent to flight-test operations. This latter method of calibration is sub-
stantially more involved than the first method, but it is worthwhile when higher quality data is required.

2.5 MICROPROCESSOR BENEFITS TO FLIGHT-TEST SYSTEMS

The previous examples illustrate the concrete benefits realized when microprocessors are applied to
fliqht-test systems. Many of the microprocessor functions just listed can be supplied by hard-wired
4' .tr .iic circuits or by electro-mechanical means, and these solutions have worked well in the past. The

J. advantage of using microprocessors is the great versatility and, in many cases, the higher
relia lity that is possiblq. As microprocessors and their associated chips are very small and have a
v-ry low power consumption, they need not be mounted in special racks but can be positioned anywhere in

a dIrcraft. The functions they execute can be changed by software. In many cases, several programs can
,stored in the memory and transitions from one to another can be initiated during flight from an onboard

IlmpL,'er or manually from a keyboard. The possibilities of real-time calculation and calibration of
.a -ter. and of preparing good layouts have enormously increased the usefulness of onboard presentation
k 4a and of automatic preflight and postflight calibration and testing.

Where 'here is no central data processor onboard the aircraft, the functions provided through using
microproce Nors are still available. The development of very powerful microprocessors during the last
decade haý made them usable as the CPU of even very large and complex data acquisition systems. Such a
central computer can be programmed to execute most of the functions mentioned or can be a central
coordinator that actuates all microprocessor circuits everywhere in the aircraft. When a central data
processor is available, the use of separate microprocessors will reduce the work that has to be done by
the central oata processor and significantly reduce the programming complexity.

Microprocessors in flight-test systems increase system fleAibility (through software control of the
system configuration) and provide rapid assessment of fiight-test conditions (through real-time
computation of derived parameters). Chosen correctly, such parameters provide substantial improvement in
flight safety and data quality.

3. MICROPROCESSOR-BASED, SYSTEM-DESIGN CONSIDERATIONS

The microprocessor is a device that can perform a variety of logical functions specified by a set of
stored, programmed instructions. The microprocessor can function as a CPU within a small computer, or as
an imbedded processor in an airborne, flight-test instrumentation system. Typical flight-test micropro-
cessor applications include controlling a data-logging process, driving a display, converting data format
for a set of flight parameters, and controlling the aircraft control surfaces for special flight testing.
Specific flight-test applications will be discussed in Section 4.

" The microprocessor should not be confused with a microcomputer. The microcomputer is a composite of
a microprocessor, memory devices, special data controllers, and Input/output (1/0) interface devices. The
microcomputer generally requires several Integrated-circuit devices on one or more circuit boards. There
are some one-chip integrated circuits that include a microprocessor, limited memory, and I/0 buffering
functions that together are called a microcomputer chip. This chip is really a specialized controller
rather than a computer. The microprocessor chip usually operates with other special-purpose integrated
circuits In the chip set. The combined effect is to function as a microcomputer or microcontroller with
,much more flexibility than a single microcomputer chip. Ordinarily, the microprocessor is fe6ricated as a
single integrated-circuit device.

L:.'*•-. ..- A e a ,. •.... - ., *. - - 'C



These are four basic advantages of a microprocessor-based system relati o hardwired, digital-logic

designs:

1. Reduction of the number of integrated-circuit devices; this usually causes a reduction in total

costs as well as a reduction in system volume, weight, and required power.

2. Arithmetic or computational capability; this is a normal feature of microprocessors.

3. Achievement of "Intelligent" operation such that a given process can be adapted depending on
external conditions and a stored algorithm.

4. Networking with other microprocessors or computers for distributed data processing.

Each of these four advlntages has positive Implications for both flight-test and flight-test-
instrumentation engineers.

3.1 MICROPROCESSOR SYSTEM ARCHITECTURE

To provide a context for the discussion of microprocessor architecture, consider a general purpose,
computer functional diagram, Figure 3.

Figure 3 is a basic configuration for bus-oriented, digital computer systems. The central unit
controls the flow of information between the unit, itself and the memory or I/0 equipment. This central
unit is called the CPU in a mainframe or minicomputer, and it is called the microprocessing unit (MPU) in
a microcomputer or in a microprocessor-based system.

The CPU/MPU controls the operation with the memory and the I/O through control lines attached to each
unit. These control lines transfer information and comprise the computer system's control bus. In addi-
tion to the control bus, there are several parallel lines that convey the information to and from memory
and I/O. These lines are grouped together and are called the data bus. A third bus, the address bus,/
points to specific memory locations or I/0 devices. In general, digital computer and microprocessor-based
systems use the data, address, and control buses to transfer data between the CPU/MPU, memory, and I/0
functions. The data and control buses transfer information in both directions and are therefore called
bidirectional buses, and the address bus is normally unidirectional.

The four main functions shared with the MPU and the CPU are data transfer, logical, arithmetic, and
decision-making operations. The main performance differences between an PPU and a CPU are speed, word
size, and tote -addressing capabilities. This performance gap will decrease as microprocessor technology
advances.

DATA BUS

CPU
INPUT/OUTPUT OR MEMORY

(I/O) MPU

ADDRESSBUS

CONTROLBUS

Figure 3. Bue-oriented digital computer.

The internal architecture of a microprocessor, shown in Figure 4, is composed of an instruction
register, an arithmetic and logic unit (ALU), a set of registers, and a control circuit that coordinates
the operation of the microprocessor. The set of registers includes both special-purpose and general-
purpose registers.

/0.0
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GENERAL
PURPOSE
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C O N T R O L . . .. . . ' , C O N T R O L

SINSTRUCTION
REGISTER

AND DECODER

BUS

Figure 4. Internal model of a microprocessor.

The control logic causes the microprocessor to perform its two main functions: fetch (or acquisition)
and execution. During the fetch phase, the microprocessor receives the next instruction to be executed
from memory. Data is fetched into an internal register, called an instruction register, which holds the
instruction while the control logic decodes it and begins executing it. During the fetch sequence, an
internal register, called the program counter, is incremented enabling the microprocessor to fetch the
next sequential instruction from memory. This is the basic sequence required to fetch an instruction and
begin executing it. The MPU then begins another instruction cycle.

The ALU's functiun is to perform the arithmetic and logic operations inside the microprocessor. The
control logic directs the operation of the ALU and causes it to perform an arithmetic or logic operation
on data from the memory or from an array of registers. The result of this operation is transferred to the
memory or to a register to complete the operation.

The general-purpose and special-purpose registers are used for temporary information storage.
Typically, a microprocr-ssor ha% several general-purpose registers that application algorithms can use
during the program execution. Special-purpose registers are registers that are optimized for unique func-
tions. Example3 of special-purpose registers include an accumulator that holds the results from the ALU,
a program counter that contains the address of the next instruction to be executed, and a status register
for storage of flag bits.

Since the microprocessor spends much of its time transferring data, this is an important function.
Data transfers can follow different paths in most microprocessors. The most Common path is to and from
memory and I/0.

Microprocessors can also perform some basic logic operations. These operations often include lcgical
multiplication (AND), logical addition (INCLUSIVE-OR), and various forms of shifting and rotating.

Decision-making functions of the microprocessor en ble it to control the execution of various
selective pans of the program and thereby perform as a controller. All of the deci.ions that a
microprocessor is capable of performing are based upon numerical tests. For example, a number can be
tested and the result can indicate a negative quantity. The microprocessor can make a decision based upon
this negative result by modifying its instruction flow. Instruction-flow modification is accomplished by
a form of conditional-branch or conditional-Jump instruction. Other commonly testable conditions are
positive, zero, not zero, carry after an addition, borrow after a subtraction, parity even, parity odd,
overflow, and equality.

3.1.1 Memory

The memory in a microprocessor system stores the data and instructions of the program. Instructions
are stored in the system's memory for quick access. Once the instructions are entered Into memory, the
microprocessor can execute them at a rate proportional to the clock frequency of the system. It can also
use the same sequence of instructions with many different sets of data. This stored-program concept gives
the microprocessor 4ts formidable processing power.

-4 .. 11- .o._.



8

In microprocessor-based systems, the program and system diagnostics are customarily stored in a
semiconductor read-only memory (RON). Various form of ROws have been developed over the years. All the
ROMs mentioned here are nonvolatile and retain data during power interruptions.

* Masked RON must be programmed while it Is being manufactured;

a Programmable RON (PROM) Is user-programmed by burning open, fusible links within the PROM;

a Erasable, Programmable RON (EPROM) is programmed electrically and erased with ultraviolet light,
using EPROM-programmer equipment. This is done while the davice is out of the system.

* Electrically Erasable PROM (EEPROM) is programmed and erased electrically, within the system and
without special equipment.

a Electrically Alterable RON (EAROM) has the same basic function as the EEPROM device.

In most systems the ROM stores the program and diagnostics. The PROM or EPROM is used to develop the
prototype system. The general function of the EEPROM is to store critical data or programmed instructions
for extended periods of time. EEPROM data storage is reprogrammable by the users of the system, but at a
slower rate than for reading. The reprograemming feature, while in the circuit, makes it extremely useful
for storing aircraft flight parameters and unit conversion tables.

Data Is commonly stored in volatile, semiconductor read/write, random Lccess memory (RAM). Read/
write memory is available in two basic forms: the dynamic form (DRAM), which requires periodic
refreshing; and the static form (SRAM), which retains data as long as power is applied. Because the
cheaper, dynamic-memory chip requires additional circuitry to accomplish refreshing, it is normally used
In larger memory systems. The term "RAM" has become associated with read/write memory, but read-only
memory is also randomly accessible. The various types of RON (masked RON, PROM, EPROM, EARON, and EEPROM)
are randomly accessible (as is read/write memory) but are not commonly called RAM. Both ROM and RAM are
fabricated from either bipolar transistors or metal-oxide semiconductor field-effect transistors
(MOSFETs). The most common transistor type is the complementary, metal-oxide semiconductor (CMOS) and the
N-channel, metal-oxide semiconductor (NMOS) memory, which can generally access data in 2UU nanoseconds or
less.

The system designer must determine the type and relative allocation of read-only and read/write
memory appropriate for the application. Most flight-test systems would require both types, Because
read/write memory is volatile, provision must be made for power-down time periods. The critical data that
cannot be lost should be stored in either EEPROM, or battery back-up read/write devices, or a combination
of both,

3.1.2 Special Purpose Registers

The Accumulator: Generally, the accumulator is the principal user register in the microprocessor.
In many microprocessors, the results of either the arithmetical or logical operations performed by the ALU
are transferred to and stored in the accumulator.

The accumulator is found in most microprocessors. It stores one of the operands to be used v the
ALU in performing arithmetical or logical operations. The accumulator can functior, both as a Jurce
register and as a destination register. As a source register, the accumulator can be programmed to add
its own contents with the contents of a memory location and to store the result in the same or another
memory location. The accumulator becomes both a source and a destination register when the result is
stored in the same accumulator.

Typically, the accumulator and general-purpose registers in the microprocessor are designed to
perform other functicis such as complementing the contents, shifting the data right or left., and rotating
the data right or left. Also, the accumulator is oftcn designed to store a cumulative or progressive
total of the numbers transferred into it. Each successive operand or number transferred into it is added
to the previous sum.

The Instruction Register and Decoder: The microprocessor's word-length-in-bits is established by the
size of the internal storage registers (counters, accumulators, and internal data transmission buses). A
word is the basic unit of bits that the machine handles as a group. Most one-chip microprocessors use 8-,
16- or 32-bit word lengths. In microprocessor terms, a 4-bit field is called a nibble and an 8-bit field
is a byte. Each operation performed by the NPU is identified by a unique group of bits called instruc-
tion codes. When an 8-uit instruction is used, it is possible for that system

8
to have up to 256 unique, sirgle-word-operational instruction codes (2 , 256),

Fetching the instruction from the program memory Involves two separate operations. First, the MPU
transmits to the memory the address of the instruction in the program counter. The memory then transmits
the contents of the addressed location to the MPU, where it is temporarily stored In a dedicated register
called the instruction register, The contents of the instruction register are then decoded by the decoder
and, in association with timed clock pulses, the appropriate data transfer paths within the system are
established, and the various activities called out by that instruction are executed.

Although 8 bits nay be adetuate for instruction codes in some microprocessors, there are cases where
more than 8 bits may be required 'e.g., an instruction that references a fairly large data memory). Here,
the 8-bit (1 byte) instruction can identify the operation to be performed but not the operand location.
A 2-byte or even larger Instruction is necessary to specify the data location.. Such multibyte
instructions are stored In adjacent memory locations. The MPU then perform two or three fetches in
succession, as appropriate, to a&quire the full instruction. Where multibyte instructions are involved,
the first byte, which usual'y contains the operation code of the instruction, is transferred into the
instruction register. The remai;¾ig byte or bytes are placed in temporary or auxiliary registers.

~'* 'r t
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The Address Register/Counter: The address register Is a temporary storage device for holding the
locat1on address to be accessed or input/output of data In data memory. This register specifies what is
put on the address bus. The number of address bus lines specifies the number of unique address loca-
tions that can be specified. For example, the 8-bit MC 6800 microprocessor has 16 address lines. Thus.

its address space is 65,536 (216). The MC 68020 can directly address 4,294,967,296 locations with a

32-bit address bus (232).

The Program Counter: Program instructions are stored in consecutive locations within the program
memory, which can consist of several memory chips. Each memory location has a unique address. In order
to execute the program in the properly assigned sequence, the microprocessor must know where to go in the
program memory to fetch the Instruction. This is done by the program counter, which contains the address
of the next instruction to be fetched. The microprocessor updates or increments the program counter every
time it fetches an Instruction.

3.1.3 Program Execution Control

When a JUMP instruction Is encountered in the program, the normal sequence is suspended. The program
counter is directed to the address specified by the JUMP Instruction rather than to the next sequential
address. This provides logical continuity to the program. A JUMP can be either a go forward or a gobackward.

Subroutines are programs within a program. During a program run, a certain group of instructions are
often used over and over again. Repeating these Instructions every time they are needed is wasteful of
program memory. Therefore, special routines can be written once, stored in the memory as a subroutine,
and called out by the main program when needed. BRANCH is a type of JUMP instruction that can also be
used to call a subroutine. The JUMP/BRANCH instruction contains the starting address of the subroutine

VI which is automatically inserted in the program counter.

To ensure an orderly return to the main program after completion of the subroutine, the address of
the next sequential instruction must be in the main program, following the JUMP/BRANCH instruction to be

* stored. Prior to the branching and execution of the subroutine, the microprocessor increments the program
counter and stores this address in a memory area called the stack. A stack is a dedicated memory area
that may be part of the normal read/write system memory.

* The last instruction in the subroutine is a BRANCH BACK or RETURN instruction that returns control
back to the main program. The microprocessor inserts the address at the top of the stack into the program
counter, and the main program is resumed at the address immediately following the JUMP/BRANCH instruction.

Nesting is the process by which one subroutine can call out a second subroutine that, in turn, may
call out a third subroutine, and so on. The number of subroutines that can be nested depends on the
number of return addresses that can be saved by the microprocessor. In other words, the depth of nesting
is determined by the depth of the stack.

3.1.4 The Stack

The stack is usually a section of read/write memory where the contents of the memory are accessed on
a last-in/first-out (LIFO) basis. When a JUMP/BRANCH instruction is executed, the following events
generally take place.

1. The contents of the program counter are incremented.

2. The contents of the program counter and other registers are transferred to the stack.

3. The starting address of the routine, which is contained in the JUMP/BRANCH Instruction itself, is
transferred to the program counter.

4. The routine is executed.

S. After completion of the routine, control is returned to the main program by transferring the
contents of the stack back into the program counter and other appropriate registers. The micro-
processor is then in the same status as just before the interruption.

6. The main program resumes Its normal operation.

3.1.5 Instruction Cycle

The microprocessor performs only what it is Instructed to do. Generally, several activities must
take place in the microprocessor for each instruction in the program. The instruction cycle covers a
certain time span. Typically, it takes several clock cycles to make one instruction cycle. The ratio be-
tween clock and instruction cycles is a function of the microprocessor- design and the instruction being
used. Figures 5 and 6 illustrate microprocessor instruction cycles.

3.1.6 Interrupts

The interrupt inputs on most microprocessors can, when placed at their active level, interrupt the
program and transfer control to a subroutine from the memory. The purpose of this subroutine, called an
interrupt-service subroutine, is to service the interrupt. Interrupts handle extremely slow external 1/0
devices, such as keyboards. Rather than requiring the microprocessor to wait for the Input of slow data
or to constantly check on the status of input data devices, interrupts allow normal execution of instruc-
tions until I/O devices or special events need attention.

""4,S-' ' -,•I•
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Figure 5. The typical Instruction cycle for a microproceasor.
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Figure 6. Machine Instruction cycle (Van Neuman cycle),

Interrupts can be simple or complex depending on the design of the microprocessor. Typically, a
microprocessor has different levels of interrupt priority that can be handled by a "vectored-interrupt"
technique. Various interrupt sources can cause the MPU to react to each with an appropriate response.
There can be both software interrupts (JUMP to SUBROUTINE) and hardware interrupts.(from peripherals).

A priority-interrupt system can be very useful in airborne flight-test situations. For example, in a
flight-test, data-logging system, If system power voltage is being lost, the proper interrupt can cause
the microprocessor to store all the critical flight-test data to some non-volatile memory before the
minimum voltage is reached.

3.1.7 The Microprocessor Chip Set

The microprocessor-chip set is the set of devices that function under the direct control of the
microprocessor to achieve the designed purpose. Normally these devices are connected to the
microprocessor via the data, address, and control buses. The following are examlles of device functions
within the chip set, the microprocessor, read/write memory (RAM), program memory ( EPRON), critical flight-
test data (EEPROM), serial and parallel data 1/O, programmable timer, priority-interrupt controller,
floppy-disk controller, arithmetic processor, direct-memory-access (DNA) controller, address decoder, bus
buffering, clock generators, etc. Several of these specialized devices a&e made for most microprocessors.
Flight-test-instrumentation engineers have many design options available to develop a microprocessor-based
system to achieve their requirements. The availability and cost of these support chips are significant
factors in the selection of a given microprocessor.

Figure 7 is an example of a microprocessor-chip set used in a flight-test application. The chip set
Illustrates a microprocessor, memory, and various special-purpose I/0 devices. The function of this
system is to continuously monitor several transducers. If the measured parameter of any transducer is
outside a preselected range, the transducer label, parameter value, and time can be recorded and trans-
mitted, In real time, to a ground station. The microprocessor can also convert the flight-test parameter
into the appropriate engineering units before the information is recorded and transmitted.

,. • . .. ':• • .



RECORDER

S 16BI
FROM OUTPUT MPU EPROM RAM EEPROM UR
TRANSDUCTORS /POE EE

MULTI• CONTOLNCRTROCHANNELSRI OAT

NC IVE

Figure 7, 16-bit microprocoaor-chip set.

All the devices shown in Figure 7, except for the transmitter, receiver, recorder, and real-time
clock are part of a normal microprocessor-chip set. This system can receive a ground station's coded
commands to reprogram through the Universal Asynchronous Receiver-Transmitter (UART). The UART is a
special-purpose integrated circuit o'ten used for general-purpose serial comu.nication. UART transfers
5 serial data from the microprocessor eata bus to the aircraft PCM transmitter/receiver unit. Because it Is
bidirectional, the UART can also tranbfer date to the microprocessor via the data bus. Due to unexpected
flight conditions, reprogramming may be necessary after flight operations have started. With the EEPROM
and UAT in the chip set, program changes can be implemented from a remote location.

Ther-e I ongoing research and development of specialized devices for the microprocessor-chip set.
For example, a special integrated-circuit device has been developed that Is able to code and decode
digital serial data at a rate of 680 MBPS (Ref. 13). With continued device development, microprocessors
will be able to control high-speed data links and provide more flight-test data at an even faster data
rate.

3.1.8 Direct Memory Access (DNA)

High-speed 1/0 peripheral devices usually exceed the speed capability of the microprocessor. A
special device in the chip set, the DNA controller, can be used to transfer large amounts of data at high
speed.

DNA is an 1/0 method in which special hardware performs most 1/0 operations. The microprocessor CPU
turns over control of the buses to the DMA controller, which then transfers data directly between the
memory and the 1/0 section. The DMA controller usually transfers an entire block of data; it provides
addresses and control signals to the memory, updates the addresses, counts the numbers of words in the

*: transfer, end signals the end of the operation.

The advantage of DMA is speed. Transfers can proceed at a rate limited only by the access time of
the memory. The microprocessor CPU need not fetch and decode the instructions that would transfer the
data, nor update the address and the counter, nor check for the end of the operation. Instead, the DNA
controller performs these tasks at a speed that far exceeds most programmed data-transfers to or from the
microprocessor.

Usually, when hardware such as a DMA-controller device replaces software, there is a tradeoff between
the speed of hardware and the greater flexibility of software. DMA controllers are rather complex. TheDMA controller is essentially a specialized processor, since it transfers data much like the normal
microprocessor.

Many microprocessors have a DNA controller within an available chip set. These are the basic

functions of DNA:

1. To bypass the microprocessor during the DMA operation.

2. To control the buses so as not to Interfere with normal microprocessor activities or cause bus
contention (data conflicts).

3. To determine the length and location of the transfer.

4. To mark the end of the operation.

A IV. -



12

Another method of faster memory access using two microprocessors is dual-ported memory. Memory
devices that are dual-ported increase the effective data rate of memory transfer by allowing connection of
.he microprocessors to a common-memory device. This has the advantage of two different microprocessors
using the same data set at Individual rates. The alternative approach is to have one microprocessor
control access to the memory device, thereby requiring the other microprocessor to interrupt it for memory
access (if only single-port memory is available). Dual-ported memory devices reduce the microprocessor
waiting periods and increase effective data-memory transfer. In the rare instance that two micropro-
cessors address a common-memory location instantaneously, the on-chip arbitration system settles the
dispute by allowing both to use the common location, but at a slightly different instant in time. The
available support chips of the selected microprocessor determine the feasibility of either DMA or
dual-ported memory.

3.1.9 Bus Buffering/Demultiplexing

Buffering the microprocessor buses is important. When several different chips are connected to the
microprocessor buses in parallel, the equivalent electrical capacitance becomes extremely large. The
current-driving capability Is increased by buffering the buses to drive this additional capacitance.
Generally, if signals must be extended off the microprocessor board, they should be buffered.

Several microprocessors have a bus that multiplexes various types of signals. This class of micro-
processors requires buffers to demultiplex the signals and route them to the proper locations. An example"% is the Intel 8085A microprocessor. The flight-test group at the Aeroplane and Armament Experiment
Establishment (AAEE), Boscombe Down, United Kingdom, has used the Intel 8085A to control an in-flight
failure-simulation system. Also, NASA Dryden Flight Research Facility at Edwards Air Force Base,
California, has used the 8085A to control an aircraft stall-speed warning system. Both these systems are
discussed in Section 4.

The Intel 8085A multiplexes the least significant B-bits of the address lines with the 8-bits of data
(ADO-AD7). This is done primarily to reduce the number of pins on the microprocessor chip. A signal is
provided to demultiplex the bus, Address Latch Enable (ALE). Figure 8 illustrates how the demultiplexing
is accomplished. The microprocessor sends out the least significant half of the 16-bit-memory address on
the address/data bus with the ALE signol. An octal transparent latch captures this portion of the address
and holds it until the microprocessor changes the memory address along with another ALE.
When the input 1G" signal is high, the latch accepts data and is transparent to the data, so it appears at
the latch's output. When ALE goes to the logical low state, the 8-bits of address are latched or
captured. With the ldtch temporarily frozen, the microprocessor then presents new data to the same
microprocessor output pins.

Do

D2UOMA D2

D3 DATA

04

LATCH A7AD 7 --- I o 0 A7

ADo - I--D 0. . As

AD4  0 D4 04 A4 DEMULTIPLEXED
AD: Z -. A3 ADDRESS
AD, !D 04 - A2

ADI Di Cit At
ADO- Do Do - A
ALE 3 05E0 o_

Figure 8. The Intel 8065A microprocessor with address end data demultiplexing.

3.1.10 Three-State Devices

Three-state logic devices help control the flow of information on the buses within the chip set. If
the microprocessor and all the various devices within the chip set have three-state (sometimes called
"trn-state") output capability, the microprocessor can effectively control data transfer. Two three-state
output devices, such as two RAM memories, can have outputs connected to a common bus, if the outputs are
not active at the same time. If the microprocessor-based system is properly designed, one memory is
active, while the other memory and all other devices on the comamon-data bus are Inactive. Thus, there are
no data-state conflicts. The proper control Input on a three-state device causes the device to be
inactive (output in a high-impedance state), which has the effect of separating the device's output from
the coon-data bus. There are three output states:
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1. logic high;
2. logic low; and

3. high impedance, if the device is inactive.

Bus contention is the term generally used to describe a data conflict when one active device is outputting
a logic high, and another active device Is simultaneously outputting e logic low on a common-data bus
line.

3.1.11 Memory-Mapped I/0 and Isolated 1/O

Various microprocessors control I/O differently. One of these techniques is memory-mapped I/O, in
which I/O devices are treated as momory. (The I/0 is processed In the same way as memory with regard to
software and hardware control signals.) The other technique is isolated 1/0 or I/O-mapped 1/0, In which
the I/O device Is treated differently. The I/0 device has a unique 1/O address, not a memory address.
Microprocessors that use this type of I/O have special instructions, IN and OUT, to transfer data to and
from this separate 1/0 space.

Both I/O control techniques have advantages and disadvantages. In the memory-mapped I/0 scheme.
there are two basic control signals: memory read and memory write. In the isolated I/O scheme, there are
four basic control signals: memory read, memory write, I/O read, and I/0 write. The main advantages of
the memory-mapped I/0 system are that It allows more space fnr I/O devices; it allows more instructions to
operate on the I/O; and it requires fewer instructions. The isolated 1/0 scheme is a simpler design and
does not require any memory space for I/O to function. The microprocessor has reserved special space for
it. More memory can be used because I/0 is not in memory space.

3.1.12 Microprocessor Instructions

The microprocessor program consists of a series of Instructions. Each Instruction is a command to
the microprocessor to perform a certain specified task. The set of instructions available is unique to a
microprocessor. When writing a program, the programmer is restricted to only those instructions provided
by that particular microprocessor. The program is a function of both the overall task as well as the
particular microprocessor instruction set. Microprocessor manufacturers group their products into proces-
sor "families." The microprocessors within a given family have similar instruction sets.

Instruction can he categorized in various ways In terms of function. Some instruction categories and
Yji examples for each are listedt

1. Data-manipulation instructions transform the data in some way. Such instructions generally use
the r"mputer's ALU. Common subcategories include

a. Arithmetic instructions
b. Logical instructions
c. Shift instructions
d. Comparison Instructions
a. Special-purpose instructions

2. Data-transfer Instructions move data from one place in the computer to another area, without
actually changing the data. Common subcategories include

a. Memory-transfer instructions
b. I/0 instructions
c. Internal-transfer instructions
d. Stack instructions

3. Program-manipulation instructions transfer program control from one place in memory to another.
They change the program counter so that instructions are executed out of their normal sequential order.
Common subcategories Include

a. Unconditional JUMP instructlons
b. Conditional JUMP/BRANCH instructions
c. Subroutining Instructions
d. Halt

4. Status-management instructions change the status conditions of the computer without affecting the
data or the order In which Instructions are executed. These instructions perform management functions
rather than data-processing functions.

a. Transfer accumulator to status-register Instruction
b. Clear Interrupt-mask instruction
c. Set Interrupt-mask Instruction

Address modes are used with the Instructions so that memory or register addresses can be used in an
effective manner. The address should be as short as possible. Short addresses take less memory space and
less time to fetch. However, a large number of memory spaces can be useful and cannot be specified with a
short address. This apparent contradiction is resolved by using one of several address modes, with an
Instruction to do a particular task. The following example uses the Motorola MC 6809. The "A"
accumulator Is loaded using four different address modes. The number of bytes required and the
microprocessor MPU cycles to fully execute the Instruction are given:
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1. The Immaedate-Addressing Mode: Load 'A" with the next Immediate byte (the first byte is the
operation code; the second byte Is the data for "A"). This is a two-byte instruction, and it requires two
MIU cycles.

2. The Extended-Addressing Mode: Load "A" with the contents of the address specified by the next
two bytes (16-bits). This is a three-byte Instruction, and it requires five MPU cycles.

3. The Direct-Addressing Mode: Load "A" with the contents of the address spucified by the next byte
(this mode is only useful for the very low end of memory). This is a two-byte instruction, and it
requires four MPU cycles.

4. The Index-Addressing Mode: Load "A" with the contents of the address specified by the addition
of the next byte and the contents of one of the index registers (an internal 16-bit register). This is
two-byte Instruction, and it requires at least four MPU cycles.

Proper consideration of the instructions as well as the different addressing modes yields the optimum
program. Microprocessors generally have from 50 to 200 instructions and 1U to 30 address modes. A
computer- or special-software-development system Is frequently used to help the programmer. Software
development is discussed later in this section.

3.1.13 Multiprocessing or Networking

The concept of either networking several microprocessors into a larger system or connecting systems
together is important in some airborne flight-test applications. Section 4 details several applicationswhere the flight-test system is based on distributed microprocessors or where a single microprocessor is
connected to a data bus of a different system on the aircraft. These are two purposes of networking
microprocessors:

1. To optimize several subordinate processes with Individual microprocessors distributed throughout
the aircraft. These processes would then be coordinated with a master-control unit, such as the Lockheed
Georgia "LADDS" system. (Section 4.1).

2. To provide a single microprocessor-based display system. The system would present various testparameters for monitoring during aircraft flight. It would require an Interface to an existing data bus
such as the NLR ARINC display system. (Section 4.4).

Networking requires a set of standard-information buses between systems and subsystems onboard the
aircraft. Two common standard-data buses for aircraft are the ARINC 429 (for commercial aircraft) and the
MIL-STD-1553 for newer US military aircraft. Both these buses contain data that flight-test systems could

* use. (Refs. 14, 15).

In order to network microprocessors together, a number of buses are defined and used. The choice of
microprocessor buses is determined by the microprocessor selected because manufacturers have tried to
"standardize" their product devices to a bus.

There are a large number of microprocessor-related buses, each having advantages and disadvantages.
(Refs. 16, 17, and 18). The following is a list of the more popular buses that connect support devices to
microprocessors. Major sponsors and a brief description of data and memory-address buses are included.

e MULTIBUS I, Intel, 8/16-bit data, 24-bit memory
e MULTIBUS 11, Intel, 32-bit data, 32-bit memory
a VME, Motorola, 16/32-bit data, 32-bit memory
a VERSABUS, Motorola, 16-bit data, 24/32-bit memory
a STO Bus, Pro-Log/Mostek, 8-bit data, 16-bit memory
a S-lO, IEEE-696, 8/16-bit data, 24-bit memory

3.2 MICROPROCESSOR SELECTION CONSIDERATIONS

Because many microprocessors are available, screening a microprocessor for a required flight
application Is critical. The following guidelines are intended for use hy the flight-test instrumentation
engineer when selecting a microprocessor.

3.2.1 Application Considerations

First, determine the general application. How will the microprocessor be used? Will its primary
function be as a controller or as a data processor?

A controller may be I/0 intensive, require special interfaces, use real-time interrupts, use a
relatively small amount of memory, and directly use assembly language for program development.

A data processing application may require a math coprocessor or*an enhanced set of arithmetic
Instructions, several addressing modes, a relatively large address space, and high-level-language software
development.

Next consider if the application is dynamic. Is it subject to change? It is the nature of most
flight applications to change and expand functionality as the application matures. This tendency should
be carefully assessed at the outset of the project, when It is far easier and often more economical to
Over-design a system in the area of computational capability. In this way, major system expansions can
often be addressed without major redesign. This may determine type of memory used, how modular the hard-
ware design, and how flexible the software. A pro ram written in a high-level language with the proper
software development equipment can be flexible, but it requires more execution time and memory space.

4,'_____________________________
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Also, does the application require a relatively long or short word to represent the data being
processed? Should a. 8-bit, 16-bit, or 32-bit microprocessor be used? An 8-bit can normally do what a
32-bit MPU can do, but it will take more time. Other considerations include type of number structure
(fixed/floating point), computation speed, and specialized data handling.

3.2.2 Implementation Considerations

Microprocessor implementation such as single-chip, multichip, or bit slice (for custom design) is
another factor in performance/development cost considerations.

Single-chip microcomputers, available from various manufacturers, are useful in less complex applica-
tions. These one-chip microcomputers contain a microprocessor CPU, RON, EPROM or EEPROM for program
storage, and RAN for data storage. In most cases, they also contain I/O operations. Small-sized systems
can be Implemented by using one of these devices and very few other components. This decreases the
expense of development time for both hardware and software. Also, the fewer components in a system, the
easier it is for field servicing.

Bit-slice technology is appropriate only when a flight application requires extremely high speed,
very wide wordwidths, or a tailored instruction set. Since the Instruction set of the bit-slice micropro-
cessor is custom-relative to the fixed-wordwidth microprocessor, more time is needed for software
development. A typical fixed-wordwidth microprocessor, such as the Intel 0085A, has a few hundred
instructions, whereas the bit-slice microprocessor may contain tens of thousands of custom Instructions.
Developing a bit-slice system requires significant increases in cost and development lead time.

The multichip-set standard microprocessor !s by far the most popular and flexible. It is a good
comromise between the limited performance of the single-chip microcomputer and costly bit-slice
technology.

3.2.3 Technology Choices

There are two main technologies used to fabricate microprocessor and other chip-set devices: bipolar
and metal-oxide semiconductor (MOS). These terms refer to the type of transistor being used within the
device. The Bipolar Junction Transistor (BJT) and the OS transistor are fabricated differently. Common
digia-l c device roups with bipolar transistors include transistor-transistor logic (TTL), and
em ttter-coupled logic (ECL). NOS transistors are used in NOS and CMOS. The transistor-fabrication
methods, as well as the design of these common digital-logic gates, are presented in several textbooks
such as those by Millman and Mead. (Refs. 19, 20).

It is difficult to compare MOS and bipolar devices due to ongoing development, but MOS devices tend
to be more dense (more transistors/functions per chip) and require less power. However, they are slower
than bipolar devices. There are some integrated devices that have both MO5 and bipolar transistors on the
same chip. There are several variations of TTL, ECL, NMOS, and CMOS devices.

The technology of microprocessor fabrication affects several features of flight-test design such as

speed, power consumption, electrical noise margin, and number of integrated-circuit chips within the
system. A few years ago, CMOS was commonly considered slower than TTL-digital gates and was used only in
low-speed applications. Today, high-speed versions of CMOS are commercially available, and CMOS has many
applications, including flight-test instrumentation. Most microprocessors are now made using MOS transis-
tors because of their relatively low power consumption and high density characteristics.

3.2.4 General Selection Considerations

The system designer should also consider these factors when choosing a microprocessor for flight-test

instrumentation:

1. Microprocessor architecture; both internal- and external-chip set.

2. Data wordwidth - for resolution of results and system speed.

4 3. Memory-addressing capability.

4. Chip-set completeness.

5. Multiprocessing/Networking.

6. Instruction set/Addressing modes.

7. Instruction-cycle time - not merely clock rate.

8. Interrupt capability.

9. Hardware and software development aids.

10. Power requirements.

11. Environmental considerations, such as military qualifications.

12. Price and availability of the total chip set.

13. Second and even third sources for the chip set. .

14. Policy constraints (e.g.. MIL-STD-1750 ISA, "ADA" Programing Language).

:_-. :
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These topics should be reviewed together. All considerations are important, but hardware and soft-
ware development aids should be emphasized. While these development aids represent a large investment,
they do make the system development, task much more productive.

3.3 SOFTWARE DEVELOP9UNT

Software development involves all activities associated with the successful organization and effi-
cient operation of the microprocessor instruction set. Development depends on. the microprocessor
selected. Once a selection has been made, software development can be based on an existing "development
system.' Many system are available to help engineers develop microprocessor-based systems. Flight-test
application software can then be efficiently written, object-coded, debugged, executed in both simulation
and emulation (real-time) modes, and time analyzed. Several high-level programing language* can be used,
such as FORTRAN, BASIC, PASCAL, "C", and FORTH. Most microprocessor manufacturers and some
general-instrumentation companies build software-development equipment.

Although software development is a function of the design engineer's specific development aids, some
general principles apply. On the overage, software (including software maintenance) increases total
system costs as more computing systems are developed and used. (Refs. 21, 22).

In regard to software development, it is also important to define the basic distinctions among the
three levels of programing languages:

1. High-level language (HLL) is problem-oriented and requires several microprocessor instructions to
implement. The HLL program is usually not a function of the target microprocessor.

2. Assembly-level language is specific to the target microprocessor and is represented by mnemonic
characters. Most HLL program statements will translate into several assembly statements.

3. Machine-level language instructions have a one-to-one relationship with assembly statements and
therefore are specific to the target microprocessor. Machine-level language is represented by
binary numbers.

Table I indicates the basic differences between working with HLL and assembly programs.

Table 1. Distinctions between high-level and assembly languages
for software development.

High-Level Language Assembly Language

Coding Reasonably efficient. Time consuming.

Testing Reasonably efficient. Time consuming.
Many tests are Some tests are performed
performed during during assembly.
compiling.

Execution Speed Less effective. More effective.

Memory Space

Documentation Efficient. Great effort.
Some HLLs are
self-documented.

Maintenance Can be done Greater effort.
and quickly and safely.
Modification

Some Long general Drivers.
Applications programs. Special high-speed tUsks.

Objective Reduction of Speed and less memory.
overall software-
development time.

3.3.1 Software Development Stages

Microprocessor software development can be divided into several stages:

1. Problem Statement and Specification. This is the most important stage in the soft-
ware-development cycle, and It fl the starting point of all succeeding activities. The problem to
be solved is defined, the various flight tasks to be performed are clearly outlined, and specifi-
cations are written. The specifications should be clear, concise. and written so the user can
readily understand them. The various inputs and expected outputs are specified, along with any
other constraints or limitations that may ba recognized and known. Procedures for handling
errors should also be included.

. 0.4t
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2. Program 1esign. This stage encompasses the design of a program to meet the requirements of the
Sproblem definition. Useful techniques Include top-down design, structured programming, modular

programing, and flowcharting.

3. ProEram Codin in HLL. This stage consists of transcribing the previously designed program into
R an t at can be translated into the machine language. The program produced in HLL codes is

called the source program. Examples of HLL include FORTRAN, FORTH, ADA, PASCAL, JOVIAL, BASIC.
OC". or Programming Language for Microprocessors (PL/M).

W 4. Translation to Microprocessor. To translate the HLL source program to the microprocessor object
code requires a compiler program. The compiler is a program written to be executed on a specific
computer, us I g ao specific HLL program as a source (the compiler input) and a specific micropro-
cessor for its object-code results (the compiler output) The program then produced in the
microprocessor's machine language is called the object program. If the source program is written
in the assembly language of the target microprocessor, then an assembler program is executed to
translate the source to the microprocessor object code. If the assembly program is written to be
executed on a general-purpose computer, It Is called a cross-assembler.

5. Debugging. Debugging (sometimes called program verification) entails the discovery and correc-
tion of programming errors. Since few programs run correctly the first time, debugging is an
important and time-consuming stage of software development. Useful debugging or verification
techniques include editors, debugging packages, software simulations and emulations, logic analy-
zers, breakpoints, trace routines, memory dumps, and software interrupts.

6. Final Validation or Testing. Program-execution testing confirms all required tasks over all
specified conditios

7. Documentation. Program documentation is necessary for user information, for maintenance, and for
future applications. Flowcharts. commented program listings, and memory maps are widely used in
program documentation.

8. Maintenance. Maintenance includes updating And correcting the program to allow for changing
conditions and field experience. Proper testing and documentation should significantly reduce
the frequency and extent of software maintenance.

9. Use d.Re-design. This stage of software development extends the program to solve tasks beyond
thelnltai prob l em definition. Designers should take advantage of programs and equipment
developed from previous tasks. Requirements for future tasks should always be considered.

Since each stage of software development affects other stages, problem definition must include
consideration of a test plan, documentation standards, maintenance techniques, and the possible extension
to other tasks. Inherent in program design are provisions for debugging, testing, and documentation.
(Ref. 23). Poor program design causes wasted effort in testing and debugging. The quality of
documentation also has an impact on maintenance and redesign.

Determining the availability of an assembler and compilers is crucial to software design. If soft-
ware tools are available, the application program can be written in FCWTRAN or other HLL and then trans-
lated to assembly rather than machine language. An experienced programmer can review the assembly state-
ments and make changes to increase speed and decrease program size.

Figure 9 illustrates the Interaction in the software development cycle. Initial planning is critical
for the development project to stay on schedule, An example of how to conduct an extensive
software-development project is discussed by Howes. (Ref. 24).

The structured approach is also emphasized In Refs. 26, 26. If software performance is critical to
flight safety, quality assurance must be built in.

Most often, the flight-test system does not have to meet a government specification or general
standards. However, a flight-test engineer or instrumentation-design engineer may find such specifica-
tions and standards useful in planning for software and hardware. The IEEE Software Standards, the U.S.
Government, and RTCA, for example, provide guidelines for a software development program and methods for
quality assurance, documentation, and testing. (Refs. 27, 28, 29,).

3.3.2 Hardware and Software Tradeoffs

Microprocessor-based systems in general, and flight-test, microprocessor-based instrumentation in
particular, require a high degree of coordination between hardware and software development. The design
team or system-design engineer(s) must consider hardware and software interactions before the final
system-design decisions are made. The addition of special devices In the microprocessor chip set can
greatly relieve the software task (e.g., an arithmetic processor in a flight-test system can do several
calculations involving transcendental functions). Such calculations are performed faster and with much
shorter programs than if the microprocessor had to do them with its basic Instruction set.

Several functions can be accomplished In hardware or software. The functions that are best done in
hardware or in software are application dependent. Special devices, circuit design, or software routines
within the main program are all valid options.

~ ~ ~ ' * _________________
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Figure 9. Microproceusor software development cycle.

Nevertheless, there are important tradeoffs within the software development process. The primary
programming language has a bearing on several factors of the microprocessor system. Some factors are the
memory required, the execution speed, program flexibility, and software documentation. The primary
programming language is appllcation-dependent. For short programs where execution speed is critical, the
program can be developed in the microprocessor's assembly language. only a small amount of memory is
used, and the project does not require the investment of a development system. This author was involved
in developing a 16-bit, 8086 microprocessor-based radar controller in which system speed was critical.
With special peripheral circuits, the microprocessor did various calculations based on several Input-data
channels, and the results were outputted every 20 microseconds, The entire control program was developed
in 8086 assembly language and required less than 800 microprocessor words of program memory (1.6K bytes).

If execution speed is not as critical, but still important. and software development aids are
available, the system designer should consider the HLL prograeming languages, FORTH and "C". Both are
used for 1/0 device control where execution speed is a main consideration. Both are used for medium or
long programs (relative to assembly language).

In summary, the functions performed In hardware/software and the primary programing language selec-
ted are ultimately determined by application, design engineer's experience, and available design-support
equipment.

3.4 MICROPROCESSOR SYSTEM DESIGN-SUPPOPT EQUIPMENT

The design of both software and hardware for a microprocessor-based flight system depends greatly on
the available support equipment. Support equipment Includes software programs for various micropro-
cessors, specialized hardware, and general electronic laboratory equipment.

4.
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The following are categories of design-support equipment:

1. Logic analyzers

2. Emulator.

3. PROM/EPROK programming equipment

4. General computers (with apl-opriate software)

5. Microprocessor development systems (many include the previous four categories)

3.4.1 The Logic Analyzer

While the triggered oscilloscope is a laboratory tool for analyzing real-time, recurring electrical
signals, it is not adequate for servicing the requirements of microprocessors/microcomputers. The logic
analyzer, a form of digital oscilloscope, has evolved as a convenient troubleshooting tool for

f micropro~essor-based systems. It displays digital data in a convenient form, either as rectangular wave-
forms representing digital data or in a tabular binary form that can be analyzed by the flight-test
engineer. Unlike analog real-time oscilloscopes or spectrum analyzers, the logic analyzer acquires and
displays information In the digital domain. Information in the digital domain consists of binary data

1 4i simultaneously presented in a bus (a group of parallel lines) as well as in the sequence these data change
on t hese lines. The digital-displayed data also include the clock and control signals, which control the
flow and processing of data and addresses.

In a conventional, non-storage oscilloscope, the instrument captures and displays events that occur
after a trigger is applied. For stable display, the event(s) must be repetitive. In a logic analyzer,
the events preceding the application of a trigger are captured, displayed, and need not be repetitive.
With a conventional oscilloscope, the trigger initiates the capture and display of Information, In a
logic analyzer, the trigger can be used to capture and display information that is present just before a
trigger is applied, This feature uses semiconductor memory devices for temporary data storage.

Most logic analyzers have the following characteristics:

1. They have several parallel Input channels. Sixteen channels (or more) are quite common.

2. The incomir, digital Information is stored in semiconductor memory chips.

3. The incoming binary bits are stored on a single pass, Unlike the oscilloscope, the incoming
information does not have to be recurring.

4. Logic analyzers capture and display information that arrived prior to the application of the
trigger.

5. The Incoming binary bits in all the input channels can be captured, stored, and displayed as
selected by the operator.

The incoming signal pulses are fed into a threshold detector that detects and converts the signals to
* the proper binary levels required by the analyzer, In many instruments, the threshold volta~e Is selected

by the operator to match the threshold voltages applicable to the logic family u sed in the device being
tested. Most instruments have one fixed-threshold setting of 1.4 V to accommodate the standard TTL family
of logic circuits, Additionally, the range selection varies from +2.5 to +12.0 V. Other fixed-threshold
settings are also used. A threshold setting of -1.3 V Ili often-used for testing high-speed
eitter-coupled logic (ECL) circuits.

3.4,2 Emulators

During the system-development cycle, there is a time when the hardware anu software must be joined.
The sooner these are joined the better, With in-circuit emulation, software can be executed on the actual
prototype hardware. This has two major advantages:

* 1. The software can be tested and debugged under realistic operating conditions.

2. The prototype hardware can be tested and debugged under the same conditions.

During this emulation task, the development system (or special in-circuit emulation device) imitates the
microprocessor by executing the program in the native instruction set and machine code. Thus. the entire
prototype hardware system (minus the actual microprocessor) can be tested and analyzed with various
equipment, such as a logic analyzer.

The emulation task should be started after the prototype software has bean written and translated,
but before final system testing and documentation have been done. Final system testing and software
validation should be done with the actual microprocessor in the system.

Possible sources of emulators and related equipment for a selected microprocessor include the micro-
processor manufacturer; general instrument companies such as Hewlett-Packard, Fluke, Tektronix,
Thomson-CSF; PROM programmers; and general-purpose computer manufacturers.
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3.4.3 Microprocessor Development Systems

Since microprocessor-based systems are generally complex, different development systems have been
devised so that programs may be developed with the aid of special-purpose software and peripherals. These
programs can later be transferred to the actual systems on which they will run.

Microcomputer development systems consist of a microprocessor with additional hardware and software
suited to the development tasks. The development systems can be used with a variety of microprocessors
and have the following components:

1. Several work stations for multiple users

2. An editor for program changes

3. Assembler/compiler for program translation

4. Linker to integrate the program

5. A facility for changing and displaying the contents of memory locations

6. A reset control that starts the processor in a known state

7. A single-step control that allows a program to be executed one step at a time for debugging
purposes

8. A run control that allows a program to be executed, beginning at a specified memory location

9. RAM that can be used as program memory

10. Interfaces to standard I/0 devices, such as keyboards, LED displays, line or character printers,
floppy-disk systems, and CRT displays.

These are other features provided with some development systems:

1. PASCAL, "C", FORTH, JOVIAL, ADA, FORTRAN, BASIC, PL/M compilers

2. Processor for specific emulation

3. A facility for setting breakpoints and initiating traces

4. Connectors for interfacing external devices to the processor buses

5. PROM/EPROM Programmer

The best source for microprocessor-based system development aids and equipment is the manufacturer of
the selected microprocessor. Other sources include general-instrumentation companies. Many features of
microprocessor development systems can be adapted to various microprocessors by using sp-cial plug-in
boards. (The Hewlett-Packard HP 6400 Logic Analyzer and Development System is used with over 3U
microprocessors from several manufacturers,)

3.5 SYSTEM ENVIRONMENT AND RELIABILITY

The reliability of a microprocessor-based system is a function of its storage and operating environ..
ment. Flight-test airborne-instrumentation systems are subject to special environmentc. Temperature
extremes, as well as temperature shocks and cycling, mechanical shock and vibrating, electromagnetic
interference (EMI), and altitude changes are all special environmental conditions that must be considered
during the design, development, and testing of flight-test instrumentation (as well as avionics in
general).

If a microprocessor or any device in the fli;ijt-test system is subject to environmental conditions

beyond its specified limits, the reliability could be degraded. It Is commonly accepted that relatively
high vibration and/or temperature shock and cycling could cause integrated-circuit devices to fail because
the internal wire bonds break or the wires sever. Relatively high or low temperatures can cause the
semiconductor to change so that voltage and current operating ranges drift out of the specifications of
the device.

Both operating and non-operating environments must be well undercstood if the specifications for the
microprocessor chip set and other components are to be accurate. R.W. Borek, itr an AGARDograph concerning
instrumentation-system installation, outlined procedural principles tnat instrumentation-development
engineers should consider before installing an electronic system onboard an aircraft. (Ref. 30). The
environment's worst-case limits must be known prior to installation of flight-test instrumentition.

3.6.1 Environment Estimation

The best source for environment limit estimation at selected parts of the aircraft is the airframe
manufacturer. Aircraft parts undergo different environmental conditions at different speed, altitude, and
maneuvering ranges. If the environmental conditions can be determined, the correct flight-test
instrumentation components can be chosen to keep the system in specification.
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If the flight-instrumentation-design engineer cannot determine all the environmental conditions,
eneral specifications for the aircraft and its avionics may be helpful for estimating environmental
imits. Instrumentation installation mest survive in the same environment as the system or subsystem it

measures. Aircraft environmental specifications for airborne electronics equipment are published by the
U.S. Department of Defense, MIL-E-5400T. (Ref. 31). This document discusses environments up to 1UOUUU
feet (31,250 meters) and temperature limits of -541C to +125

0
C. Also discussed are vibration limits for

propeller and Jet-powered aircraft, as well as helicopters. Other publications that may be used for
environmental estimation are Environmental Test Methods, MIL-STD-810C (Ref. 32). Climatic Extremes for
Military Equipment, MIL-STD-2109 (Ref. 33), and Environmental Conditions and Test Procedures for Airborne
Equipment (Ref. 34). Tnese documents discuss a wide range of airborne environmental tests.

3.5.2 Reliability

Reliability Is a consideration at all levels of electronics from basic materials to full operating
systems. Reliability Is an engineering discipline that needs attention early in the design phase, as well
as throughout instrumentation-system development, instal1 ation, and final testing. Reliability should be
fundamental in any flight-test program. Each hour of a flight test is critical in terms of resources and
flight safety. Sometimes a system is considered reliable because it contains military-qualified compo-nents, or a reliability engineer has analyzed it after the fact. This thinking can lead to wasted flighthours and costly system redesign.

There are many factors in airborne-electronic-equipment reliability: system Jesign, component selec-
tion. environmental conditions, testing, and handling. Two papers on reliability engineering, Coppola
(Ref. 35) and O'Connor (Ref. 36), discuss these topics in detail. Reliability screening of integrated
circuits began in the mid 1960s. (Ref. 35). Several testing standards and methods have been developedVsince then. Test Methods and Procedures for Microelectronics, MIL-STD-883C (Ref. 37) and GeneralSpecifications for Microcircuits, MIL-M-38510F (Ref. 38) define uniform methods and procedures for testing

integrated circuits. Also defined are processing procedures in chip fabrication. Microprocessors and
support integrated circuits are fabricated and tested based on these two specifications. A good document
to aid in reliability calculations is a reliability prediction handbook. (Ref. 39).

The decision on the use of MIL-SPEC devices must be made early in the flight-system design process.
A primary driver in the decision is thk application environment. Since MIL-SPEC devices are quite
expensive, the decision can greatly affect development costs. If it is decided to use MIL-SPEC devices in
the final airborne system, commercial 3PEC devices could possibly be used in the development/prototyping
stages to lower costs. Electrical specifications must be examined very closely since MIL-SPEC and their
commercial part substitutions are not electrically identical.

Most integrated circuits are not fabricated to military specifications; some are not fully tested
before they are shipped from the manufadturer. A very small number of microprocessors and support chipt
cannot function properly even before they are used in normal operation. Thus, before final system-design
decisions are made, the flight-test instrumentation engineer must carefully consider the level of
component quality needed to be consistent with the airborne environment.

Acceptable quality level (AQL) is a measure of the average level of defective devices within a
sample. The average device quality will be a function of the fabrication and test-screening processes.
An AQL of 0.05-percent to 0.1-percent defective devices within a sample is now reasonable 'o expect (but
not to assume). This can directly relate to choice of semiconductor devices for the flight-test system.

3.5.3 Failure Mechanisms

There can be several reasons why an integrated circuit fails: destructive environments, inferior
materials, inadequate p,'ocess controls, and improper handling. A costly hazard, when handling micro-
processors and MOS integrated circuits, is electrostatic discharge (ESD). Due to fabrication methods,
most MOS microprocessors and related support devices are susceptible to ESD. Improper use of devices
allows ESD to destroy millions of dollars worth of devices ever) year. (Ref. 35),

The reliability of integrated circuits conform to the "bathtub" curve, which plots failure rate as a
function of time. As shown in Fgure 10, the three phases associated with this curve are early life,
useful life, and wearout.

Early Life (Infant Mortality): This phase covers devices that fail in the early life of the system.
The failure rate decreases rapidly during this initial period, and the phase is short (a few weeks or
months). The infant mortality varies widely from one application to another and is influenced by
systsm-stress conditions.

Useful Life: This is the period extending from the end of infant mortality to the beginning of
wearout, at which point the failure rate begins to increase again. The useful life is usually expressed

in years. Although there Is insufficient data to define a true useful life, in most cases, the minimum
life of a device usually suffices to assure adequate design margins. The useful life usually extends for
decades if adequate design margins are applied. Temperature plays a major role in triggering the begin-
ning of wearout, but other stresses, such as pressure, mechanical stress, theimal cycling, and electrical
loads are important. Failure rate is the percentage of devices that fail per unit time during the flat
portion of the curve (from the end of infant mortality to wearout). Usually expressed as percent per
1,000 hours (sometimes per billion hours or FITs) this statistic can also be stated as mean time between
failures (MTBF), which is simply the reciprocal of failure rate.

Wearout: The end of the useful life for a group of integrated circuits is characterized by an
increasing failure rate as a function of time. Most integrated circuit devices, in the proper environ-
ment, will have several years of normal operation. While an accurate prediction is difficult, Intel has
stated a goal of 20 years' useful life for their NOS dynamic RAM devices. (Ref. 40).

A:A
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Figure 10. Integrated-circuit reliability life,

Inadequate fabrication processing and poor materials may cause over 50 types of failures to the
integrated-circuit chip. (Ref. 41). These are snme examples of principal failure mechanisms:

1. Encapsulation failure (humidity and imparity penetration)

2. Macrochip failure (cracks across the chip, small cracks at the bondings)

3. Imperfect chip attachmert to substrate

4. Wire bonds (excessive bonding pressure, misplaced bonds, crossed wires)

5. Aluminum and gold conductors (electromigration, corrosion)

6. Design defects (diffusion faults, -Improper design)

Table 2 shows that the main stress factors contributing to infant mortality ae electrical tran-
sients, noise, mechanical maltreatment, and excessive temperatures. Most infant failures occur in three
stress-producing phases:

1. Device burn-in (a pre-operational screening process)

2. Card assembly and handling

3. Initial system test and operation

Table 2. Common infant mortality failure mechanisms.

Failure Mechanism Defect Stress Factors

Oxide ruptures Thin or defective oxide I System electrical
(masking and oxidation) noise

a System power
interruptions

a Inductive loading

Open-wire bonds Assembly defects e Ultrasonic exposure
during card assembly

e Excessive teMperature

Lifted-die bonds Assembly defects I Excessive temperature

Fused-die Metallization

Shorts Inadequate spacing a System-electrical
between adjacent stripes noise

I System power
I nterruptions

npen Inadequate stripewidth e Inductive loading
and/,)r thickness

Corrosioneof wire Sal leaks * Handling damage
bonds and/or die (drfective encapsulators) I Excessive solder heat
metallization during card assembly

.A
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UI Although device burn-in can serve as an indicator of infant mortality, carefully controlled burn-in
tests seldom resemble the broad range of conditions (especially electrical noise) encountered in actual
use. Field reliability data is therefore taken as the best source of infant mortality.

3.5.4 Temperature Effects

9 A primary factor of integrated-circuit reliability is the junction temperature (not environmental

temperature) on the device chip. The difference between the junction and environmental temperatures is a
function of the total thermal resistance between the Junctions and the ambient temperature.

The reliability will decrease exponentially with temperature increases in the chip junction. The
following formula (Refs. 39, 42) is used to characterize the effect on an Integrated circuit.

X2  - E/K (l/T 2 - 1/T1 )

where

X1 Failure rate at Junction temperature T1

Ak2 - Failure rate at junction temperature T2

F - Acceleration factor of failure rate

aT and T2 - junction temperatures in *K

E - Thermal-activation energy in electron units (eVa

K • Boltzman's constant (8.617 x 10- eV/IK).

The thermal-activation energy level is a function of chip-fabrication factors, but it can generally
be estimated at 0.7 eV for NMOS and CMOS transistors and at 0.4 eV for bipolar devices such as the common
TTL family of logic.

Equivalent junction temperature can be estimated by applying both the thermal resistance from the
junction to the ambient air and the total power dissipated by the device to the following formulai

T - P0  aJA + TA

where

T- Equivalent chip-junction temperature

P- Total chip power dissipated

-JA - Thermal resistance from junction to ambient air (normally determined by the device
manufacturer)

TA - Temperature of the ambient air

The principle of increasing temperature In order to increase the failure rate Is used by the
manufacturer to accelerate testing of the device. Microprocessors are tested at a high temperature
(125C) to stress the devices. Failure rates can be estimated from the test results. Recent tests by
Motorola indicate their CMOS microprocessors have a failure rate of 1.3 x 10-7 (failures/hr) or
(0.013%/1,000 hr) at an equivalent operating temperature of 70*C. (Ref. 43).

4. SELECTED APPLICATIONS OF AIRBORNE MICROPROCESSORS IN FLIGHT-TEST PROGRAMS

t~croprocessor opplications In flight-test equipment are numerous, and a comprehensive application
picture would be very difficult to describe. Microprocessors are currently playing expanding roles in
these flight test areas: data logging, signal processing, displays, system diagnostics, controls. and
calibration.

This section describes some selected applications of interest to engineers working with
microprocessors in airborne systems.

The following descriptions represent examples of how microprocessors are used in flight testing and

flight-test instrumentation. The author wishes to thank the instrumentation engineers whose valuable
contributions provided the primary source material for this section. Their names appear at the end of
each application description.

4.1 AIRBORNE DATA SYSTEM WITH ONBOARD REAL.-TIME ANALYSIS (LOCKHEED GEORGIA)

Lockheed Georgia Company, Marietta, Georgia, has developed a flight-test data system that collects,
processes, and displays real-time data using several distributed microprocessors. The system was
developed for use on the C-141B and has beel used on other transport-type aircraft. The Lockheed system
enables thu flight-test engineer to look at various element groups of processed data during the flight.
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This real-time data can be rapidly evaluated during selected tests as the flight progresses. This reduces
flight time and costs since the acceptability of a maneuver can be immediately determined from the onboard
data. Also, the possibility of later reflIghts due to missed data is reduced.

The basic data-collection system consists of an acquisition microcomputer and one to eight remote
input modules. Each of these Input modules can signal-condition 16 sensor channels. The microprocessor-
based acquisition computer has a 128-channel capability. If required, up to eight acquisition computers
may be connected to provide 1,024 data-measurement direct channels.

The Texas Instruments T19900 microprocessor(s) allows the acquisition computer to control the input
modules acquiring the data. This microprocessor performs offset corrections and multiplications to
convert sensor scale factors to engineering units. It also provides a form of dynamic sensor calibration.
The microprocessor accomplishes several parameter conversions such as time Intervals into rates, period
measurements Into frequencies, discrete strain measurements into loads, and voltage into temperatures.
Acquisition computers perform distributed processing functions throughout the aircraft. They are operated
under the control of a master computer, which also uses a T19900 microprocessor. The master computer
allows the acquisition units to independently perform both distributed data acquisition and parameter-con-
version processing. The master computer also controls the transfer of this preprocessed data to the main
memory. The transfer occurs over several hundred times a second.

A complete scan of 1.024 data channels requires 372 microseconds. Figure 11 shows a functional
diagram of the Lockheed Airborne Data System (LADS). The main function of the LADS system, in addition to
logging flight-test data, is to process the data under the direction of an applications minicomputer.
(Ref. 9). The applications computer (a coprocessor with the master computer) allows the flight-test
engineer to select an application of current interest. Application programs are used to process the
flight-test data and present the results as a graphical, real-time display. Programs are executed in the
applications computer, using processed data from the master computer. A good example of an applications
program is the one in which aircraft gross weight and center of gravity are displayed in real-time. The
program reads 10 fuel-tank quantities, applies corrections, computes fuel available, computes current
gross weight and total moment (considering flap and gear configuration), then computes current center of
gravity and stall speed. The flight-test engineer can see this and other important information displayed
in succession as the aircraft is maneuvering.

The LADS system is cost-effective because it utilizes microprocessor-based, distributed data
trocessing. A great deal of digital processing must be accomplished as physically close to the distri-
uted sensors as possible. Without microprocessors, this concept would be extremely costly.
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Figure I 1. Lockheed Airborne Data System (LADS).
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4.1.1 Microprocessor-Related Functions

The acquisition microcomputer uses a Texas Instruments TMS9900 16-bit microprocessor with static RAM,
EPROM, and a DNA control device. The digitized sensor data is stored in RAM under DMA control. DNA
control Is used to Input data and commands to the read/write memory with the least time delay. The TMS99UU
microprocessor is used as the controlling and computing element for each group of 16-channel modules. The
acquisition microcomputer has 4-K (4,096) words of read/write memory (RAN) and 4-K words of
•program-stored, non-volatile memory (EPROM).

The software is written In assembly language to optimize speed and memory space. All arithmetic
* operations are done in fixed-point format to achieve the necessary processing speed.

There are three levels of Interrupt control. Interrupt level zero is an unmaskable, power-up
interrupt. When power Is applied to the system, it vectors program execution to the initialization
routines of the TMS9900 internal registers and interval timer. Another interrupt level synchronizes the
eight acquisition computers to the master-computer commands for the sensor scans. The third interrupt
level signals the acquisition processor that DNA transfers have been received from the master computer for
configuration changes.

Input data are sampled under CPU control at rates ranging from 20 to 160 samples per second. These
dedata are acquired by signal-conditioning modules during a sampling window 375 microseconds wide. The data
are transferred into RAN by DMA. Once the CPU senses data-transfer completion, it begins to process raw
data Into scaled engineering units. All direct data are processed first. Derived measurement
calculations then follow, but only for those derived measurements specified in the database. All
processing Is completed prior to initiation of the next data sample, Idle time is used in servicing the
CRT display.

The Lockheed flight-test system is being updated to use the Intel family of microprocessor-related
devices, Including the 16-bit 8086 microprocessor and the 8087 math coprocessor for increased computing
speed. Selected sections of the system memory will consist of EEPROM devices (due to its in-circuit
programming and nonvolatile features) and greater use of Large Scale Integration (LSI) for support
devices. The software will be developed with PL/M. Selected program portions will be written in assembly
language.

Technical Sources: Mr. James A. Tabb, Staff Engineering Specialist and Mr. Michael L. Roginsky,
Engineering Specialist, Engineering Test and Evaluation Division, Lockheed-Georgia Co,, Marietta, Georgia.

4.2 AIRFRAME FLUTTER TESTING (MCDONNELL AIRCRAFT)

McDonnell Aircraft Company of Saint Louis, Missouri (a subsidiary of the McDonnell Douglas
Corporation) has developed a microprocessor-based system to assist in determining airframe flutter
characteristics of fighter-sized jet aircraft. The system Is called the Flutter Exciter Control Unit
(FECU). This flutter exciter control system, with some modifications, Is used in the flight testing of
several different aircraft. It interfaces with flight-control computers to provide both analog and
discrete command signals, resulting In controlled deflections of various aircraft surfaces. These
deflections of the ailerons, the stabilators, and the rudder induce a controlled, airframe flutter.
Flutter characteristics can then be studied and evaluated. Flight safety is a paramount consideration
with this type of testing.

The flutter exciter control system Is a programmable, digitally controlled signal generator. The
system is developed around a CMOS 8-bit mir,.processor, the RCA 1802.

The RCA microprocessor performs overall control and monitoring functions based on an operating system
(firmeare) stored In EPRON. Waveform generation and signal generation are assigned to peripheral devices
rather than the microprocessor. The waveform characteristics aTe also stored in EPROMs and are selected
by the microprocessor, based on prestored user inputs. The design is inherently flexible and can provide
various waveforms to test different airframes, or it can adapt waveforms when modifications of a given
airframe are necessary.

The control-unit panel keyboard is located in the cockpit so the test pilot can control and monitor
the FECU. Figure 12 shows the FECU control panel. Amplitude, frequency, sweep rate, mode, and aircraft
aerodynamic control surfaces can be controlled and monitored by the pilot as events are executed by the
microprocessor. The signal-output circuitry can stale three waveforms for the selected control surface.
To ensure flight safety, shutdown-detection logic provides monitoring of several internal and external
fault conditions.

4.2.1 Flutter Excitation (Flight-Testing Background)

Testing for flight flutter involves exciting the aircraft's natural vibration modes during selected
flight conditions and measuring the response to the excitation. The critical flutter speed is then
predicted from measurements acquired at subcritical speeds. (Ref. 44).

In the early years of flight testing, the primary in-flight flutter excitation technique was
pilot-induced stick raps and rudder kicks. By the mid-1960s, McDonnell and other aircraft companies were
using electronics to provide the necessary forcing functions on the aircraft control surfaces to cause
flutter. As microprocessor-based system evolve, so will the flexibility and precision of how well the
flutter modes can be generated, controlled, and measured.

I
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Figure 12. Front panel, FECU.

A basic factor In the design of new aircraft is freedom from flutter throughout the entire flight
envelope. With higher speeds, lighter materials, and diverse wing configurations. flutter considerations
are even more cr1 tical. In spite of advances in theoretical flutter analysis and wind tunnel
measurements, actual flight tests are still necessary to verify that an aircraft is free from flutter
with in a gi ven flight envelope.

When a wing or other structure in an airstream is subjected to a disturbance, the resulting oscil-
latory motion induces changing aerodynamic forces on the structure. At low speeds, these forces tend to
oppose the motion, thus providing positive damping of the structure. However, as the speed of the air-
craft increases, the forces on the structure change. This can cause new vibration modes. (Ref. 44, 4b).

To accurately characterize the flutter behavior of the aircraft, good quantitative frequency and
damping data must be obtained for all modes of interest. Since flight testing is very costly, flutter-
testing program must be structured to be comprehensive, accurate, and time-efficient; yet, the aerody-
namics and structural characteristics of the aircraft ctnnot be changed. (Refs. 4b, 47). A
microprocessor-based system such as the FECU can achieve these objectives.

Figure 13 illustrates the basic functions of flutter excitation. Table 3 compares two exciter
systems: the first is a mid-lg60s electronic system, and the second is a newer FECU. Both were used for
fighter-sized jet aircraft.
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Figure 13. Flutter excitation using en electronic function generator.
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STable 3. Characteristics of electronic flutter exciters.

Stabilator exciter only FECU

Control-surfaces Stabilator Ailerons
excited Rudders

Stabi lators

Electronic-device Discrete components CNOS (digital and
technology (transistors, etc.) analog)

Excitation frequency 8 Hz to 30 Hz 2 Hz to 60 Hz
range and accuracy + 0.33 Hz + 0.01 Hz

Full-scale surface + 2 0 Ai1 ; 10 *
deflection Rud: 4 10.

Stab:_+ 10*

Form of excitation Square wave Sinusoidal
Random

Sweep-rate control Internally sat to EPRON prograemmle

rate

Control of excitation Manual Stored program

Visual cues for pilot 7 28

Adjustable/Programamble 9 22
parameters

No. of stored programs/ H/A 16 programs entered
Method of program entry via front-panel

keyboard, before or
during flight

In-flight excitation Potentiometer and switch Auto-increment
setup (typical time, adjustments (30 s) (1 s)
seconds) Program recall (5 s)

lew program entry
(30 s)

4.2.2 Characteristics of the Flutter Exciter

The FECU was designed primarily using CHOS integrated circuits, both digital and analog. The unit
supplies excitation as well as bias to the ailerons, stabilators, and rudders via a flight-control
computer. The exzitation can be swept sinusoid or constant sinusoid, or It can be a-bandpass-limited.
random signal. Excitation to the ailerons and stabilators can be symmetrical or antisynmatrical.

E;:-citation parameters are selected in complete sets called "programs." Each program contains all the
ch.aracteristics reqlired to specify an output excitation. Programmable parameters include surface
(aileron, rvdder, stabilator); mode (sweep, dwell, or random); start and stop frequency (2.0 to 6U.U Hz);
percent full-scale amplitude; symmetry; bias deflection; and run duration. Programs are entered, stored.
and recalled from * front-panel keyboard. The selected program parameters appear in light-emitting diode
(LED) displays o,0 the front panel. Up to 16 such programs can be stored In a nonvolatile memory within
the FECU. In the swiep mode, the duration is computed (as a function of start and stop frequencies) and
displayed. The FEWO has three operating states: standby, ready, and run. In the standby state, no
excitation is output. In the ready state, the programmed bias is applied at 1 degree per second and held.
In the run state, the programmed excitation Is applied. Runs can be halted at any time by pressing the
ABORT RUN switch. The FECU also can be disengaged by a paddle switch on the control stick. Safety-of-
flight inputs to the FECU include shutdown signals from the flight-control computer or strain-gage outputs
caused by excessive loading of the stabilators.

The FECU performs a self-test function. Storage of excitation parameters in the form of programs
reduces pilot workload by eliminating the need to set front-panel controls. This allows more testing per
flight. The programs anticipated for use on a test flight can be entered as part of the preflight
procedure. Program are then executed sequentially during the desired flight conditions.

4.2.3 The Microprocessor

The RCA 1802 microprocessor, used as the FECU's CPU, Is fabricated with CMOS technology to keep
power-supply requirements to a minimum. CHOS devices also have the advantage of substantial noise
immunity. Most instructions are single byte and are executed in 3.2 microseconds with a 5 MHz clock, If
the 1802 Is operated with a clock of 5 WMz and operated at 5 Vdc, it requires only 4 mA from the power
supply (20 mi1liwatts). This RCA microprocessor is fully static and can be operated with any clock
frequency up to approximately 6 MHz. In the FECU design, a lower clock frequency was used in order to
simplify and reduce power In the memory and 1/0 circuitry. The 1802 microprocessor can be operated over a
range of voltages (4 to 10 Vdc) and over the normal military temperature range of -50C to + 125C.
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The 1802 has a bi-directional 8-bit data bus, 8-bit iMltiplexed address bus, programmed I/O, DNA, and
one-level vectored interrupt. This architecture was modified in the FECU by additional hardware to
provide a 16-bit buffered data bus, buffered address bus, isolated memory and input busses, modified-
memory mapped I/0. and expanded timing and control signals. Figure 14 Is a block diagram of the FECU
system.
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4.2.4 Firware

The operation of the Flutter Exciter is controlled by the microprocessor as it executes PROM stored

firmware programs.

The firmware programs perform these main functions:

1. Process and store keyboard inputs into valid parameter sets (programs) in order to define a
specific mode of operation.

2. Recall and verify previously stored programs.

3. Update panel displays and air-to-ground interface.

4. Control hardware functions through the generation of control words and/or control strobes.

5. Manage operating states through monitoring of internal parameters, external inputs, and manual
key entries.

6. Detect faults on a limited, but continuous basis, with a more extensive, dedicated self-test
function available on command,

The firmware controlling the dedicated self-test function is not contained with the main firmware but
is stored in the sweep-rate PROM. This allows changes to the self-test limits without the need to alter
the main firmware. This firmware is down-loaded into RAN for execution. After completion of the
self-test cycle, the set self-test routine Is purged from memory. A failure during solf-test generates an
Interrupt that forces the executions back to the main firmare, which uttlizes existing displays to
indicate failing functions.

Technical Sources: Mr. Robert L. Grant, Technical Specialist and Mr. James J. Meany, Senior
Engineer, Fight Test Data Acquisition, McDonnell Aircraft, Saint Louis, Missouri.

4.3 IN-FLIGHT FAILURE SIMULATION SYSTEM (AME, UK)

The Aeroplane and Armament Experimental Establishment, Boscombe Down. United Kingdom, has developed
an in-flight Failure Simulation System (F55) for use ina special Tornado aeroplane. (Refs. 48, 49, 5U).
The FSS is designed to inject test signals into the aircraft flight-control system to test its response to
simulated hardware failures. The system Is used to test the combined behavior of the pilot as well as the
aircraft during the recovery period.
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The FSS uses both analog and digital signals to sitmulate a failure. After the simulated failure has
had its effect, the system masures and displays the time necessary for the pilot to recognize the s$ie-
lated failure. The full scale of thIs time display Is 99.9 seconds with 0.1-second resolution. This
measured, elapsed time will be displayed until the pilot initiates a nw action. The pilot can disconnect
the FSS from the flight-control system simly by pressing an abort switch or switching FSS off. The FSS
does not affect the flight of the aircraft, but It directly menipulates autopilot signals and is therefore
potentially a safety critical system. A primary design goal was an adequate level of integrity with a
reasonable cost.

Flight-safety Integrity was achieved by having all critical circuits of the FSS duplicated and
isolated, so as to prevent self-failure from inducing a safety critical condition. Figure 15 is a func-
tion diagram of the FSS. Neither the analog nor digi t•' channel of the duplex system can output signals
to the Autopilot and Flight Director System (AFDS) without authorization by the other channel. Any
detected failure arising within critical areas of the FSS circuitry causes a rapid disconnect of the FSS
aelectronics from AFDS and restores all AF0S signal connections to normal.

CONTROL AND DISPLAY PANEL

SWITCH I I
STATUS DUPLEX PANEL CLOCK

INDICATORE CONTROL DISPLAYEl II

SI. I

iPI Fil Sl

FUNCTION GENIMATO1 4FUNCTION OSNERATOn 2

PnRgCSion PROCIESSOq

ANALOG- DIGITAL. DIGITAL- ANALOG-FUNCTION FUNCTION FUNCTION FUNCTION
GENERATOR GENERATOR GENERATOR GENERATOR

S WITCH MATRIX Sm WITCH MATRIlX

AU;'OPILOT ,NDI AUTOPIL|OT ANDO
FUGHT.DINICTON COMPUTER FUOHT-DIMsCTOR COMPUTIR

1 2

Figure 15. Failure Simulation System.

The FSS consists of three units. The Failure System Controller (FSC), includes the display panel
used by the rear cockpit operator. The FSC is a slave peripheral to two other units, cal'ied Failure
Simulation Function Generators (FSFGs). These two units are identical and interchangeablo. They are
characteriked by external wiring into a master (FSFGI) and slave (FSFG2) relationship. This
characterization causes a slightly different software configuration to be adopted by the master and slave.
The FSFGs are responsible for virtually all FSS operations. They Interpret, echo operator commands,
generate the necessary AFDS signals, and connect these as appropriate to the AFOS. A major part of the
AFOS is Its two computers. The functional connections of these two computers and the Terrain Following
Computer (TFC) to the FSS are shown in Figure 16. To minimize ground currents that would introduce errors
in the analog cross-feed signals, ed~h FSFG is powered via an Isolating dc-dc converter, and all signal
lines between the FSFG and other FSS units preserve ground isolation (in most cases by the use of optical
coupling).

Each FSFG contains five functional modules:

1. A microprocessor-based controller
2. An Interface to the FSC
3. An analog-function generator
4. A digital-function generator
5. Relay switching circuits that connect the FSS to AFDS wiring

I. A,'
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The processor module is based on Intel 's 8065 microprocessor. The program and fixed data are stored
In 16K bytes of EPRON. All unused EPRON locations are filled with HALT instructions to improve integrity.
Read/write memory receives 1K of static RAN. The module also provides other hardware utilities such as
timer/counter functions and interrupt facilities. (See Figure 16.) The I/0 structure of the processor is
connected to all other modules via a common backplane.

m ',TO OTHER
CP U MODULES

RAM CONTERSTIMER iNTEPRUPTA

Figure 16. Processor module.

4.3.1 Flight Safety Precautions

Since FSS operation is potentially critical to the flight safety of the aircraft, the self-test and
system-abort features should be summarized. A processor reset occurs at power-up, whenever the 5-V supply
falls below its minimum threshold of 4.5V, or whenever the TEST switch is operated. The reset initiates
all hardware, and Its removal causes an orderly start of program execution from memory location zero. A
power-up or power-fail reset always latches an ABORT condition, isolating the FSS from the AFOS. To
resume operation, the operator must press TEST. After resolving its master/slave role, the processor
enters a self-test mode and checks these items:

1. RAM
2. EPROM
3. Power supplies
4. Relay drivers
5. Analog and digital-function generators
6. Watchdog and other timers
7. Abort circuits

Upon successful completion of the self-test mode, the panel display is initiated and controls are scanned
for operetor-coomand Inputs. Failure of the self-test causes an ABORT condition; the AFUS is disconnected
from the FSS circuits; and an error code Is displayed Indicating the location or type of failure.

The FSS abort system disconnects the AFOS from the FSS in the event of internal failure or an
operator ABORT request. ABORT action is initiated by any of the following:

1. Operator pressing ABORT
2. A watchdog time-out
3. 5-V power supply failure
4. A CPU-output Instruction In response to a software-detected failure of hardware
S. An ABORT by the other FSFG

With any such event, the ABORT latch activates the ABORT condition until the TEST switch Is operated.
The ABORT latch is not defeated by loss of power. Each FSFG has its own ABORT circuit. Circuits are
coupled so that an ABORT of one causes the other to ABORT, and a failure of one ABORT circuit cannot
prevent an ABORT by the other.

An independent watchdog timer detects CPU runaway conditions. Timing independent of the processor
clock can check the duration of the main program cycle. Maximum and minimum limits are imposed and any
limit exceedance causes an ABORT. The CPU can test and set a subsidiary latch to determine whether the
watchdog has tripped, but the CPU cannot reset the ABORT condition unless the TEST switch is depressed.

Handshaking lines are provided between the two FSFGs to synchronize their operation. To improve
integrity, time-out constraints are placed on the handshake sequence by each processor.

The FSC interface module provides input conditioning for Stick Force. Cut-Out (SFCO) and Instinctive
Cut-Off (ICO) signals. These signals are buffered and protected against computer failure. Three signals
are recognized: the ICO, SFCO (Pitch), and SFCO (Roll). All are handled in the sam way. They initiate
termination of an existing fault-generation sequence and stop the display clock from incrementing.

4.3.2 The Microprocessor

The Intel 8085 microprocessor, used as the CPU of the FSS, Is an improved version of the popular UUUU
microprocessor. both the 9806 and 8080 are 6-bit IUOS microprocessor$. Intel specifies that the WOas islO0-percent software compatible with the 8080, but it is not hardare pin-for-pin compatible.
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The 8086 has an on-chip clock and an instruction-cycle time of approximately 1.5 microseconds. The
microprocessor also his four vectored-interrupt Inputs, serial 1/0 features, and is powered with a single
5-Vdc power supply.

The 8086 controls the FSS by means of a stored program within the 16K EPROM. System status signals
and date, including those from the operator, are inputted to the 8085 date bus, processed, and transferred
to appropriate units by the microprocessor.

Technical Source: Mr. Allen Wright. Head of CIG Instrumentation Design, Aeroplane and Armament
Experimental Establishment, Boscombe Down, United Kingdom.

4.4 A tINC DISPLAY SYSTEM (ILR, NETHERLANDS)

The National Aerospace Laboratory (NLR, Amsterdam, Netherlands) has developed an ARINC Display System
that can display two parameters from an ARINC 429 data stream simultaneously. (Ref. 51). The system is
designed as a development tool for the testing and maintenance of flight test ipstrumentation. It is
designed to flight-test instrumentation standards, for use during flight. Although several such di: olay
units are on the market, they do not incorporate a microprocessor. Nevertheless, the specification for
this instrument requires the following special features that can only be realized by a microprocessor:

1. The displays must present the labels, the data words, and the designation matrix of one or two
parameters selected from one ARINC 429 stream.

2. The data must be presented either in engineering units (calibrated data) or In hexadecimal form
(rough data).

3. The labels must be presented either In mnemonics or in octal code.
4. Parameter selection must take niace via a keyboard, either in octal code (numeric presentation)

or by function keys (mnemr ' resentation).A

5. It must be possible to change the calibrations for the presentation of data In engineering units.

Figure 17 shows the functional operation of the ARINC Display System. Both the ARINC labels to be
presented and the method of presentation are chosen using the 16-key Keyboard. The ARINC ircerface enters
successive ARINC words into the microprocessor. Only ARINC words with the selected labels are further
processed. The processed data are then transmitted to the correct display by the display interface
driver.

ARINC DATA

AR INC

INTERFACE

QODISPLAY LCD
CPUI DR ICPR MODULE

GA/FIT READ ONLY
REA~DWRITE MEMORW'

MEMORY MEMORY
(RAM) (ErRaA)

Figure 17. NLR-ARINC Displly System.

The ARINC Display System is based on the Motorola 6800 microprocessor (with an extended temperature
range for use onboard aircraft). The 6800 has an 8-bit data bus, a .16-bit address that can directly
address 65,536 addresses, and vectored interrupts. It Is powered by a single 5-V power supply. it has 72
variable-length instructions with seven addressing modes. The instruction set resembles that of the
POP-11 minicomputer.

The program is stored in a 2K-byte EPROM; temporary data (calibrations and keyboard inputs) are in a
1K-byte RAn. The keyboard and the liquid-crystal display are connected to the microprocessor via a
standard Peripheral Interface Adaptor (PIA). When the system was designed, no standard Interfaces for
ARINC busses were on the market. This interface was, therefore, specially designed by the NLR. (See
Figure 18.) Each entering bipolar ARINC word is transformed into digital TTL-level code and then written
into the 32-bit shift register. When the shift register Is full, a sync pulse is sent to the Interrupt

ii
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Figure 18. ARINC data bus and microprocessor Interface.

Request (IRQ) input of the microprocessor. Four address codes are provided on the address bus, and the
ARINC code is read as four bytes. If the label of the ARINC word matches one of the selected labels, the
word is processed to provide the selected mode of presentation.

The LCDS used In the system (Hitatchi H2570 series) display alphanumeric characters in a dot-matrix
format. This type of display offers several Important advantages: Power consumption is exceptionally low
(0.5 mA @ 5 Vdc); long life is inherent, since the unit is solid state; there are 200 different character
fonts; weight is approximately about 26 grams; and the contrast ratio of the display remains the same
under all ambient light conditions.

Technical Sources: Peter J. Manders, P. G. Beerthuizen, and Jan M. Visser of the Information
Division, National Aerospace Laboratory, The Netherlands.

4.5 STALL-SPEED WARNING SYSTEM (RASA)

The NASA Dryden Flight Research racility at Edwards Air Force Base, California, has developed an
aircraft Stall-Speed Warning System that is based on the Intel 8085A microprocessor. NASA designed,
built, and flight-tested this system jointly with the U.S. Army for the Army's OV-1C Mohawk aircraft, but
the approach that was used could be applied to several other aircraft. (Refs. 52, 53, 54). The system
displays both irspeed and stall speed to the pilot, and it presents a synthesized voice to warn the pilot
at a predetermined safety-margin speed.

The microprocessor combines several aerodynamic parameters to compute the airspeed and stall spnpL in
real time. These parameters include dynamic pressure, altitude pressure, elevator and flap posi..ions,
engine torques, horizontal and vertical acceleration, and fuel used. Eleven sensors are used to measure
these flight parameters. (See Table 4.)

With the support of an arithmetic processor (coprocessor) unit (Intel 8231A), the Intel 8086A 8-bit
microprocessor can perform computations fast enough to present airspeed and stall speed to the pilot in
real time. The special purpose arithmetic processor performs intensive operations such as trigonometric
and Inverse-trigonomatric functions, square roots, logarithms, and the more typical functions such as
addition, subtraction, multiplication, and division. These arithmetic operations can be done in either of
two formats: fixedpoint, single and double precision (16 or 32 bits at a time) or in 32-bit floating
point. The Intel 8 31A uses special-purpose instructions that execute these arithmetic functions and
formats with a speed advantage several hundred times faster than the general-purpose 8O0BA, which acts as
the data controller to the 8231A. The two devices exchange data via their common data bus.

4.6.1 Speed Calculations

Equation 1 gives indicated airspeed (VIFPS), feet per second:

VIFPS r (70.7262) lb/ft
2 /tnIi 11 1(2

po4(
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Table 4. Sensors and flight parameters for the Stall-Speed Warning System.

Sensor Parameters Units

so Longitudinal acceleration g

S1 Vertical acceleration 9

S2 Flap position deg

S3 Elevator position dog

S4 Landing-gear, strut-compressed switch

S5 Pressure altitude inHg

S6 Dynamic pressure inHg

S7 Total fuel used, right engine gal

S8 Total fuel used, left engine gAl

2
S9 Left-engine torque sensor ib/in

SID Right-engine torque sensor lb/In
2

Equation 2 gives Indicated stall speed (VSIKTS), knots:

.2(w[sin(ALPHA)(,ax+cos ALPHA)(az)) - LT-TSINATj 1 2VSIKTS - 0.5925 ( p)(x (L•( 2)

In these equations,

Po - 0.002378 slug/ft 3 (air density at sea level)

w - current weight of aircraft, lb (calculated)

ALPHA - stall angle of attack, degrees (constant)

ax - longitudinal acceleration, g (measured)

az - vertical acceleration, g (measured)

L1 - lift from the tail, lb (calculated'

TSINAT -vertical component of thrust, lb (calculated)

sw •wing area, square feet (constant)

Q • dynamic pressure (measured)

CLVCRT - critical effective coefficient of lift (a calculated polynomial).

These two equations represent only a small portion of the total calculations made by the microproces-
sor and its arithmetic coprocessor. Such calculations are performed up to one hundred times per second in
order to keep the pilot informed of airspeed and stall speed. (Ref. 53). To derive these speeds, the
system stores, within EEPROM, several coefficients that are aircraft- and flight-test-configuration
dependent. The coefficients were measured on the Initial flight test of the aircraft with the system
onboard. (Ref. 53).

4.5.2 General Hardware Description

The Stall-Speed Warning System Is enclosed in two main parts, one of which contains the signal
conditioning, processing, I/0 circuitry, along with the aural warning. The other part of the Stall-Speed
Warning System contains the electronics used to drive the cockpit indicator. The part containing most of
the electronics is called the Airborne Instrumentation Computer System (AICS). (Ref. 54). It represents
NASA/Dryden's effort to standardize the design of the system for ongoing and future flight-test needs.
The AICS provides a standard-size enclosure with a single-board microcomputer and a standard beck-plane
that accommodates commercially available or special-purpose, in-house-designed custom boards. The bus
used in the AICS is the widely used "STO" bus developed by Pro-Log Corporation. (Ref. 55). The AICS
contains six slots. As developed and configured for this system, five of the slots contain a mixture of
commercially available and in-house designed boards:

1. Single-board processor
2. EEPROM board

3. Parallel-interface board
4. Analog-to-digital converter board
5. Voice-synthesizer and audio-power amplifier board

4 .7o
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Figures 19 and 20 provide a system overview of the Stall-Speed Warning System and its processor board.
Two boards (the single-board processor board and the voice-synthesizer amplifier board) were designed and
built at NASA/Oryden; the remaining three boards were bought commercially. The commercial boards were
modified to make them more envlronmentally hardened.

INPUT/OUTPUT
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AM W AYNIGH--POWER SYNCI4RO
DRIVER BOX COCKPIT•TL. 

IN D IC A T O R

AAG12.OAT DII NAL/
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',•. OC~~PAALEL /OR BOARD YCR CNETR

OUU NISE R AMPLFIER
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SPOTRAM VICREOCYNTHER ARCRAFT INTERCO

SUDO ORWER AMPEYEM AT

•NALO1-61 DIGITAL/TUDNA
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The electronics part of the Stall-Speed Warning System contains the drive circuitry for the
cockpit-mounted indicator as shown i n Figure 21. This circuitry includes two separate digital-to-synchro
converters with high-power transistor amplifiers. Each dlgital-to-synchro board is capable of driving anystandard load (CT- or CDX- passive loads and tor¢:ue receivers) of up to a 3-A peak. The indicator forvisually displaying airspeed and stall speed is a modified, dual-needle radio magnetic indicator (RMI).
NASA installed the same airspeed-indicator dial face as is used in the OV-1C aircraft. Along with theco!Iventtonal airspeed pointer, another pointer with a red triangle was added to indicate calculated stallspeed. The portable visual display unit, purchased commrercially, interfaces the microcomputer board (
both calculated and raw-data values. Another RS-232C port allows post-flight dumping of test data in
engineering units and provides derived coefficient of lift.

4.5.3 Single-Board Microcomputer

These are salient features of the single-board microcomputer:

1. SO85A microprocessor

2. 8231A floating-point processor

3. 22 bits of parallel 1/0

4. Two USARTs that are progrananable

5. 10.25K-bytes onboard memory configured as l0K-bytes/EPROM and 266-bytes/RAN or BK-bytes/EPROM and2.25K-bytes/RAN

6. Three 16-bit progrananable timers

7. Address decoding

P L. STL bus interface
The single-board microcomuter is a fully flight-qualified board, built on a six-layer printedcTrcuit board (POE). The board contains 24 Integrated circuits, as well as an assortment of miscellaneous

support circuitry.

4..
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The 8085A microprocessor has its lower 8 bits of address/data lines (ADO-A07), as well as its control

lines to control an 8155 integrated circuit. The 8155 provides two 8-bit and one 6-bit parallel 1/0 ports
(used to interface the 8085A to the digital-to-synchro converters); 566 bytes of static RAN; and a 14-bit
programeable timer for the board. Two 2732 EPROM-intetqated circuits provide the board with UK bytes of
program memory. The remaining 2K bytes of RAN mamory are provided by a Hitachi 6116 CMOS-integrated-
circuit chip.

4.5.4 8231A Arithmetic Processor (Coprocessor)

The 8231A Is interfaced to the 8085A through the lower 8 bits of the address/data bus (AD7-ADO), as
well as through the control lines for read and write, clock, chip select, and the least significant
address line, AO. The 8085A passes data and commands (which arithmetic operations to do) to the 8231A via
the 8-bit data bus and then places the data into an internal stack. The 8231A can 'store eight
single-precision, fixed-point, values or four double-precision, fixed-point value words in an internal
stack. The floating-point format uses a 32-bit word, with the least significant 24-bits representing the
mantissa and the most signiicant 8 bits1 iepresenting the exponent. Thus, the range of values represented
in this way is +(2.7 x I to 9.2 x 10 ). With the 32-bit floating point and the 32-bit integer modes,
this arithmetic7processor has in excess of 40 special arithmetic instructions (Ref. 56).

4.5.S EEPRON

EEPRON is needed to provide storage of coefficients and sensor data during the initial flight-test
hase. This data must be retained even when the aircraft's power is off. After the flight, the data most
e analyzed by the project engineer in the laboratory. EEPROM is commercially available using Intel 2816

nonvolatile EEPROM ICs. The board, when fully populated with eight 2816 chips allows for 16K bytes of
memory. This application used only 2K bytes.

EEPROK is treated by the 8085A microprocessor as an offboard pseudo-RAM memory interfaced through the
STO bus. Sivce the write operation to the board is longer than that for normal RAM, wait periods are
required during which the 8085A does nothing. Also, due to the nature of the write electronics on the
EEPROM board, a read operation Immediately after a write operation is not recommended, since the write
electronics take several microseconds to settle.

4.5.6 Voice Synthesizer

This function interfaces the processor board to a voice synthesizer and audio power amplifier via the
STO bus. The board uses a Votrax SC-01 phonemc speech synthesizer that has a repertoire of 64 phonemes
(addressable through a 6-bit data word). Two bits govern the pitch of the phoneme. Additional pitch
control is obtained by using a 5497 binary-rate multiplier. An 8755 (2K bytes of EPROM and 16 1/0 lines)
is also on this board. The analog-synthesized "words" are then amplified with an adjustable-gain power
amplifier capable of driving approximately 0.5 W into an 8-ohm speaker or of driving a higher impedance,
audio-Intercom system.

When the processor determines that the Indicated airspeed is within a predetermined percentage of the
stall speed, the processor outputs an aural warning to the pilot through this board. This predetermined
airspeed threshold is set as the greater of 107.5 percent of indicated stall speed or 7.5 knots plus the
Indicated stall speed. These two values can be increased or decreased in real time through a terminal.
Once amplified, the synthesized message is fed into the pilot's headset alerting the pilot to observe the
airspeed. Also, ei algorithm is used to increase the number of times this aural message is sent. The
frequency is based on the difference between the two speed values, but the message is not sent more than
0.9 times a second.

Figures 22 through 25 detail various parts of the Stall-Speed Warning System.

4.5.7 System Software

The software for the Stall-Speed Warning System is made up of five major sections:

1. Initialization routine
2. Input-data formatting
3. Data collection
4. Data-processing and velocity calculations
5. Cockpit-indicator drive and aural output

During the first phase of flight testing, data is collected for predetermined flight conditions.
Such data is time-tagged with an event marker actuated by the flight-test engineer when flight conditions
are correct. At each time-tagged event, all parameters are loaded into the EEPROM circuits. During the
flIght, a maximum of 60 separate samples can be obtained (2K bytes of nonvolatile memory storage). Upon
flight completion, the data can be outputted to a printer and analyzed on a larger computing system. The
resulting output of the derived coefficient of lift makes it easy to spot-check data without the aid of a
large computer. The purpose of the exercise is to determine the coefficients of the stall-speed
equations. The coefficients can then be loaded back into the AICS via the visual display unit. A new
flight is necessary to validate the stall-speed calculations. During this phase of flight testing, the
visual display unit also displays the various parameters to the flight-test engineer. Indicated velocity,
as well as indicated stall speed, are shown. However, the validity of the stall speed is only as accurate
as the coefficients. Data collection takes approximately 10 to 54 microseconds for the entire set of
parameters. This ensures an update of each parameter 20 times per second. Approximately 44 microseconds
of the period are necessary for outputting to the display. The visual display itself is updated once
every 0.5 seconds, while the cockpit indicator Is updated every sample. Ten microseconds are necessary to
update sensor calibrations and synchros. The entire operation Is Intended to collect data from the 11
sensolls, to process the data, to perform velocity calculations, and to output results by display and
synthesized voice to the pilot.

"-.-- . - . - - * . - - -. " I /. . . ' :. ... :. . .: -- - - . 1 . . . . .. . .
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Figure 22. U.S. Army OV-iC Mohawk aircraft.

Figure 23. Prototype of the AICS, Stall-Speed Warning %,stem.,
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Hgure 24. Flnsi version of the AICS, SteollSpead Warning System.
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Figure 25. Procesmo board, Staill-Speed Warning System.
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Technical Sources: Mr. Glenn A. Bever and Mr. Douglas 0. Wilner, Senior Electronics Engineers, NASA,

Ames Research Center, Dryden Flight Research Facility, Edwards, California. (Mr. Wilner is no longer a
NASA mployee).

4.6 ARINC-429 TELEMETRY INTERFACE (DFVLR, WEST GERMANY)

The DFVLR at Braunschweig. Federal Republic of Germany, has developed a microprocessor-based systemthat monitors, decodes, displays, and $ends to a telemetry unit selected flight parameters on the ARINC

0trcraft bus. (Ref. 57). The platform Is the DFVLR Advanced Technology Test Aircraft System (ATTAS).
The ATTAS is an instrumented aircraft used for experimental development of avionics systems and in-flight
simulation. The microprocessor Is an 8-bit Rockwell 6502. (See Figure 26.)

The multipurpose system has these general functions:

1. Interfaces the ARINC-429 general aircraft bus to a DVR-182 database computer and PCM telemetry
encoder made by the Hentschel Company.

2. Decodes and displays selected data in engineering units.

Stores and displays ARINC-429 input data as it is sent to the telemetry encoder.

4. Uses an operator keyboard to select data for display.

5. Presents selected data to. as many as five parallel auxiliary outputs.

6. Offers the flight-test engineer several diagnostic self-test routines.

LL

S ~DISPLAY

INTERFACE DVR 182
RAM &

RCMENCODER

0PARALLEL
LATCHES DAoTAu.

MEMORY
RAM

St EPROM

Figure 2(•. ARINC-429 telemetry interface.

The system Input connects to the ARINC bus with shielded cable and outputs to a PCM telemetry encoder
with 76 output data and two handshaking lines. The 24 bits of an ARINC data word are latched Into a buffer

register of the DVR-782 interface. This register accepts new data only after the complete contents have
been transferred to the DVR-782. A 6522 Versatile Interface Adapter (VIA) buffers data to an auxiliary
output.

An LC display is used with the operation keyboard to denote selected flight parameters. The 6502
microprocessor is used to convert the ARINC format to engineering units. For axeale, with the position
of the ATTAS aircraft displayed, the operator can also, if necessary, display the flight parameters in a
binary format. The system-hardware status check, general error massages, and operational command menus
can also be displayed.

4.6.1 The Microprocessor

The 6602 is a popular 8-bit microprocessor. It has several peripheral Integrated-circuit devices in
its chip set. It can execute 56 basic Instructions with 13 address modes. It can directly address 65,536
memory locations, and it is available in a low-power CMOS version.

• •. ,•.• ,*: , •* .... .
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4.6.2 Additional Airborne Micreprocessor-besed System

DFVLR, Braunschweig, has developed two other microprocessor-based flight-test systems: an in-flight
antenna calibration unit and an IRIG-tim-code reader. Both systems were developed using the Rockwell
6502 microprocessor as the control unit. (Refs. 58. 59).

Technical Sources: Joarg Wolf, Joachim Gabriel, Kurt Klein. Test Instrumentation Design Engineers.
DFVLR, Braunschweig. Federal Republic of Germany.

5. CwMKCIAL NICROPROCESSORS AND SUPPORT DivICES

Microprocessors are comercially available with word lengths of 4. 8. 16, and 32 bits. Table 5
indicates the general performance level en instrumentation-design engineer can expect with typical micro-
processor devices. Electronics trade magazines provide information on currk~nt microprocessor and support
devices. EON magazine has been publishing microprocessor performance d•a and related support-device
directories on an annual basis for several years. (Refs. 60, 61). The int!-rmation in Tables 5 and 6 was
obtained from Refs. 60 through 64 and represents a small portion of the t3tal information available on
microprocessor devices.

Table 5. Comparison of selected microprocessors (June 1985).

Word Address
1  Bit Bus

Part Manufacturer Type Width Uidth Speed Clock Date

2901 Advanced Micro Devices Bit Slice 4* Varies U.115 10.0 1974
29300 Advanced Micro Devices Bit Slice 32* 32 0.08 12.5 19db
6502 Commodore MPU 8 16 3.0 4.0 197b
F8 Fairchild MPU (3850) 8 N/A 2.0 2.U 1974
F9450 Fairchild MPU (NIL-STD-1750A ISA) 16 16 0.2 20.0 1983
T424 INMOS Transputer 2 3- 32 0.1 5.U 1985
8048 Intel Microcomputer chip 8 N/A 1.4 8.0 1977
8080 Intel MPU 8 16 2.0 2.0 1974
8085 Intel MPU 8 16 1.3 3.0 1976
8086 Intel MPU 16 ZU 0.6 b.0 1978
8088 Intel MPU 8 20 0.6 5.0 1979
80286 Intel MPU It- 24 01.25 b.0 1984
80386 Intel MPU 31, 32 0.28 20.U 198b
6800 Motorola MPU 8 16 1.0 2.0 1974
6805 Motorola Microcomputer Chip 8 N/A 2.0 4.0 1979
6809 Motorola MPU 8 16 1.5 2.0 1979
68000 Motorola MPU 26 24 0.37 12.u 1980
68020 Motorola NPU 32 32 0.3 16.0 1984
1802 RCA NPU 8 16 5.U 3.2 1978
PPS-4 Rockwell Microcomputer Chip 4 N/A 8.3 0.2 1974
TMSI000 Texas Instruments Microcomputer Chip 4 N/A 10.0 0.4 1974
TMS9900 Texas Instruments NPU 16 1i 2.0 3.0 1976

Z8 Zilog Microcomputer Chip 8 N/A 1.5 8.0 1976
zoo Zilog NPU 8 16 0.7 6.0 1976
28000 Zilog "PU 16 24 0.4 I0.0 1981
Z80,000 Z4log NPU 32 32 0.2 2b.u 1985

NOTES:

2 Each part number can include several variations.
Microcomputer chip - MPU + meory + special I/0 on one chip.
W Word size/device slice.

Clock a MPU clock frequency In msgah,4rtz (Nliz).
Speed - shortest Instruction-execution approximate time, in microseconds.
Date - approximate date of introduction.

Table 6 provides a representative sample of the special-purpose support devices used in micropro-

cessor chip sets. The available support devices sometimes determine what microprocessors are selected.

The transputer is a new microprocessor device developed by IINMOS. Although the device has probably

not been used in an airborne flight-test application, it may be used in the future whenever system speed
and concurrent processing is required. The INMOS T424 transputer is essentially a 32-bit microprocessor

with these features: on-chip mamory (4-K RAM); addressing capability up to 4-6 bits; and serial link
interfaces. Its instruction set was designed for use with high-level languages. The transputer can
execute instructions in 100 nanoseconds. It can function as a single processor, or It can be linked to
other transputers to do parallel processing tasks.

. ..
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Table 6. Selected microprocessor special-purpose
v support devices (June 1986).

Microprocessor
Function Manufacturer Part No. Comatibility Comnts

Parallel 1/0 Harris 62C65A 8060/8085 5 MHz, CMOS
Parallel I/o Motorola 68230 68000 10 M44z, K40S

![Parallel 1/0 NEC 7210 S086 8 MHz, IEEE-488

Serial 1/0 Signattcs 68662 68000 46 baud, M0OS
Serial I/0 Zilog Z84C40 Z80 BOO baud, CHS

System Clock, Timor Hitachi HD6340 6800 2 MHz, CMOS
3 16-bit Timers

System Clock. Timer Zilog Z84C30 Z80 4 Mz, CMOS
F 4 16-bit, Timers

Arithmetic Processor Motorola 68881 680W 16 MHz, Trig"IEEE Floating Point

Arithmetic Processing Intel 8231A 8086A 2 MHz, Trig
32-bit Floating Point

Interrupt Controller Intel/Harris 825C59A 8080/85 CMOS, 8 Priority Levels
8086/88

DMA Controller Motorola 68442 68000 10 MHz. NMOS

Disk Controller Signetics 68454 68000 10 MHz, K40S
hard and floppy

CRT Controller Motorola 68486 68000 14 MHz, HCMOS

LAN* Controller Intel 82586 8086/88 NNOS
80286 Ethernet. IBM PC

Analog Interface Texas TLO808 general Successive approximation
Instruments 8 channels. 8-bit A/D

Speech: Analysis/ OKI MSM 5128 general 0-64K bps
Synthesis CMOS

'LAN - Local Ar'ea Network
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44 APPEN•[ A

A LIMITEI GLOSSARI OF WICROPiOC[SSOMMIC.OCCWTMIt 7M

Access Time. The d4lay between the tim when a memory receives an address and the time when the date from
that location is available at the output.

Accumlator. A register that is used to accumulate or collect results. For example, a computer performs
addition by adding a number in memory to the contents of an accumulator; the sum remains in the
accumulator.

Active - HNig. The active logic state is the one state.

Active - Law. The active logic state is the zero state.

ADA. DoD standard language (NIL-STD.181SA) intended to replace all existing DoD languages used for
embedded computer system.

Address. The identification code that distinguishes one location of memory from another. The CPU can use
the address to select a particular location.

Address bus. A bus that the CPU uses to select a particular location of memory or an input/output port
for a data transfer.

Addressing meada. The means to specify the memory addresses that the computer needs to execute ait
instruction. These addresses may tell the coputer where to obtain data, where to store data, or where
to find the next instruction.

Algorithm. A well-defined set of rules or procedures for the solution of a program.

Analog. Continuous signal or quantity that can take any value.

Applications software. The programs that actually do the work (e.g., print lists, convert flight
parameters, or monitor a teamerature) as opposed to programs that help operate the computer or help
programmers write other programs (systems software).

Architecture, Structure of a system; in the case of computers, architecture often refers specifically to
the way in which the CPU Is organized.

Arithmetic Logic Unit (ALU). A subsystem that can perform a variety of arithmetic or logical functions
under the control of function inputs.

ASCII. American Standard Code for Information Interchange; a 7-bit code often used to represent typed
characters in computers.

Assembler. A computer program that converts assembly language program (source code) into the numerical
form (object code) that the computer actually executes. The assembly converts mnemonic operation codes
(such as ADD, SUB, or MOVE) into their numerical equivalents, replaces symbols or labels with their
numerical equivalents, and assigns locations in the computer's memory to data and instructions.

Assembly language. A programming language (specific to a particular CPU) in which the programmer uses
mnemonic operation codes, names, and labels to refer directly to their numerical equivalents. Assembly
language Is a low-level language, since the assembler translates each statement directly into one
machine-language instruction (rather than Into a series of machine- language instructions, as is the
case with a high-level language). Writing assembly-language programs requires detailed understanding of
a particular CP U.

Asynchronous. Operating without reference to an overall timing source.

BASIC. Beginners' All-purpose Symbolic Instruction Code; a widely used interactive computer language that
is especially well-suited to personal comuters and beginning users. BASIC was developed by Kemny and
Klutz in the middle 1960s at Dartmouth College.

laud. A measure of the rate at which data is transmitted, expressed in terms of the number of state
changes per second, Common data rates are 300, 1200, 2400, 4800, and 9600 baud.

BCD. Binary-coded decimal; a method for representing decimal numbers in which each decimal digit Is coded
in four bits.

Benchmark. A problem or program that can be used as a basis for comparing computers, languages, etc.

Bidirectional. Able to transfer data in either direction.

lBmary. Number system with base 2; the only digits are 0 and 1. Also refers to any system that has only
two possible states or levels, such as a switch that is either on or off.

Bit. A binary digit; it can only have the values 0 or 1.

Bit Slice. A section of CPU that my be combined in parallel with other such sections to form a complete
CPU with various word lengths.

Block. A set of data or memory locations.
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Bootstrap (loader). A program that starts the computer and prepares It to load uther program into Its
mmory. The bootstrap may reside in read-only memory or the operator may have to enter it by hand.

Bottom-up design. A method for designing program in which the programer designs, codes, and tests all

the parts of the program (or modules) before combining them.

Branch Instruction. An instruction that specifically tells the microprocessor/mtcrocomputer where to get
the next instruction, thus forcing it to depart from its normal sequential execution. Branch
instructions explictly change the program counter. They may be conditional, that is, only tell the
computer where to get the next instruction if a condition is satisfied.

Breakpoint. A condition under which the computer is to stop execution of Its current program; used as an
aid in debugging program. The programmr must specify (set) the breakpoints.

Buffer. A temporery storage area for data; often used to hold data that has just been read from an input
device or is about to be sent to an output device.

Bus. A group of parallel wires that allow data transfer between functional devices. Examples: data bus,
control bus, address bus.

Bus contentiom. A situation in which two or more devices are trying to place data on a common bus at the
$same time.

Byte. The basic grouping of bits that a computer can handle at one time, 8 bits in length. One byte can
hold one type ASCII character or two decimal (BCD) digits.

C. A high-level programming language specifically designed for writing systems software; originally
developed at Bell Telephone Laboratories.

Chip. A substrate containing a single integrated crcuit.

Clock. A regular timing signal (i.e., a series of pulses equally spaced in time that tell a computer or a
component when to do various functions.

CHOS. Complementary Metal Oxide Semiconductor; a type of integrated circuit that requires very little
power and will withstand a large amount of electrical noise, often used in spacecraft and in portable
equipment that must operate from a battery.

Coding. The writing of programs In a language that a computer can either execute or translate Into an
executable form.

Cement. A part of a computer program that explains what is happening but does not affect how the
computer executes the program. Comments are used to document programs.

Compiler. A computer program that translates another program written in a high-level language into a
prograr, that a computer can execute. A compiler translates the entire program and produces an
executable program (object file).

CPU. Central Processing Unit; the main control function of a microcomputer. Microprocessors are used as

a CPU.

Data b•s. A bus that Is used to transfer data between the CPU and the memory or the input/output section.

Data file. A file that contains data rather than programs or procedures.

Debugger. A program that helps the user find and correct errors in other programs. The errors are called
bugs.

Decoder. A device that converts coded information Into Its actual maning.

Direct Vapory Access (DNA). A method for quickly transferring data to or from a computer's memory without
executing the main program.

Disessembler. A program that translates a machine-language program (object code) back into assembly

language. A disassembler is the opposite of an assembler. It translates numbers into the imemonic
operation codes and names that the programer can understand more easily.

Disk. A circular device with a magnetic surface that Is used to record data. Floppy (flexible) disks are
capable of holding hundreds of thousands of bytes, whereas hard disks are capable of holding tens of
millions of bytes.

Disk controller. A device that controls the operations of a disk, the interface between a disk and a
computer.

Diskette. An individual floppy disk, the recording medium in a floppy disk system. There is sometimes
confusion among the term diskette, disk, and floppy disk, but diskette refers only to the medium, not
to the control or.

Disk Operating System (DOS). An operating system that allows the user to transfer program and data to or
from a disk. There are many different (usually incompatible) disk operating systems.
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Doacumentation. The techniques Used to describe a computer program so that it can be used, maintained, and
updatod.

Domble-donslty. Special recording method for floppy disks that allows them to store twice as much data as
In normal or single-density.

Dooble-sided. Recording on both Sides of a floppy disk.

Dynamic memory. A memory that loses its contents gradually without any external causes. The contents
simply leak away unless the computer periodically rewrites them into the memory; the rewriting is called

Editor. A computer program that lets the user prepare printed matter (text material) or input for other
programs. It allows the user to correct, add, delete, or rearrange material.

Emitter-Coupled Logic (ECL). A high-speed bipolar technology for integrated circuits.

Emulation. To Imitate one system with another.

EPRON (Erasable PROM). A Prograimmable Reed Only Memory (PROM) that can be erased by exposing it to
ultraviolet light. Comrplete erasure usually takes 20 to 30 minutes. (See PROM.)

REEPRO1N. Electrically Erasable PROM. Basically, a read-only -memo ry integrated circuit that can be erased
with an electronic pulse and reprogrammued while in the circuit.

Executable. Can be executed by a computer without translation.

File. A collection of related records or data treated as a unit. Editors, assemblers, and compilers
V normally work on program or data files. System commnands that the user needs repeatedly may be kept in a

procedure file to save typing.

Firvaicre. Programs stored in read-only memory.

Flag, An Indicator that is either on (1) or off (0) and can be used to select between two alternative
courses of action.

Floppy disk, A flexible disk with a magnetic surface that can be used to store data. The surface is
divided into areas called sectors. An individual floppy disk is often called a diskette.

Flowchart. A graphic representation of a computer program.

FOR"h. A high-level programming language. Special-purpose conmmands can be defined and added easily. It
is aninterpreted language that has a relatively fast execution time.

General-Purpose Interface Bus (OP13). IEEE-488 Bus, A standard interface intended for use in networks of
instruments.

Global. Defined In more than one section of a computer program; a universal variable rather than one used
only locally.

Hard disk. A disk that is not flexible-, more expensive than a flexible (floppy) disk but capable of
storing much more data.

Hexadecimal. Number system with base 16; uses the decimal digits (0 through 9) and the letters A through
F as its digits.

High-Level Language (HILL). A programing language in which the statements represent procedures rather
than single computer instructions. A comrpiler or Interpreter translates a program written in a
high-level language Into a form that the conputer can execute. Coimmon high-level languages are BASIC,
COBOL, FORTRAN. PASCAL, wCm. ADA, JOVIAL, andT FORTH.

Input/Output (1/O) section. The section of the computer that connects the CPU to the peripherals.

Instruction. An instruction tells the comrputer what operation to perform next.

Integrated Circuit (IC). A complete electrical circuit on a single semiconductor chip.

Inutelligent (or smart) terminal. A terminal that has its own computing capability and can be used to
process date even when It is not connected to a computer.

interpreter. A computer program that executes programs written In a high- level language. An interpreter
e xecutes each statement inmmediately after reading It;, it does not produce an object program, as a
compiler does, so the program must be translated each time it is run.

Interrupt. An input to a computer that forces It to suspend its current program and execute a special
program (or service routine). Interrupts are often used to tell the computer that Peripherals are ready
to send or receive data.

Interrupt service routine. A program that performs the actions required to respond to en interrupt.

1/0 driver. A computer program that transfers data to or from an 1/0 device, also celled an 1/O utility.
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1/0 utility. A computer program that transfers data to or from an 1/O device, also called an 1/O driver.

Jovial. A high-level programming language. Primarily used for airborne embedded microprocessors and
computers for Dob projects.

Jump instruction. An insItruction that specifically tells the computer where to get the next Instruction,
similar to a branch instruction.

K. A term used to mean 1024 (210) when referring to the size of a computer memory.

Kilobit. 1024 bits, also referred to as 1K.

Kilobyte. 1024 bytes, also referred to as 1K.

Label. A name attached to a statement in a program so that other statements can transfer control to that
statement or can use the nan* as if it were a memory address. The label takes the value of the memory
address in which the executable version of the statement starts.

Large-Scale Integration (LSI). Integrated circuits of very great complexity on a single chip. Typical
LSI circuits are memory chips, microprocessors, microcomputers, and calculator chips.

Latch. A device that retains its contents until new data is specifically entered into it.

Line editor. An editor that manipulates text as a series of lines rather than as a continuous string of
characters.

Line printer. A printer that prints an entire line of characters at a time.

Linking loader. A program that combines a,,series of programs and subroutines that may have been assembled
or compiled separately and places them alin memory with the required interconnections.

Loader. A program that reads another program from an input device into memory.

Logic analyzer. An electronic test instrument that can display the states of many time-varying signals at
once.

Loop. A self-contained sequence of statements that the computer repeats until a terminating condition is
satisfied.

Machine independent (or computer independent). Will run on any computer or on any computer that has a
compiler or interpreter for a particular language. Also referred to as portable.

Machine language. A computer language that consists of instructions written in a numerical form that a
computer can execute directly. Also called machine code or abject code.

Macro. A name given to a series of assembly language instructions. The assembler replaces each reference
to the macro with a copy of the series of instructions, thus saving a large amount of repetitive typing.

Maintenance (of programs). Updating and correcting a computer program that is in actual use.

Megabyte. One million bytes or 1,048,576 bytes (2 20)

Memory-mapped input/output. A method for addressing 1/0 ports whereby they are treated as if they were
memory locations.

Memory protect. A feature that stops programs from writing into all or part of memory, thus preserving
programs or data from accidental or unauthorized over-writing.

Microprocessor. A single-chip central processing unit on an LSI chip; common versions are the Intel 8081),
8085, and 8086; Conmmodore 6502; Motorola 6800. 68000; Zilog Z-80 and Zilog Z-8000.

Mnemonic. A name that suggests the actual meaning or purpose of the object to which it refers. Mnemonics
are used to represent the microprocessor/computer instruction set.

Modulaor programing. A prograimning method In which the programmer divides the entire task into logically
4'separate sections (or modules).

Monitor (software). A simple operating system that allows the user to enter programs and data Into
memoryI run programs, and observe the contents of registers and memory locations. Operating systems can
also have monitors that check tasks and users on systems.

MOS. Metal Oxide Sem'iconductor; a popular method of integrated circuit fabrication. Microprocessors are
typically made using this technology.

MPU. Microprocessor Unit; a term used for the microprocessor device that is being used as the central
processor of a system.

Multitasking. Executing several tasks at the same time without having to complete one before starting
another. Each task may be given a slice of time or may be executed until its further operation requires
the execution of another task or some external action.

Multi-user. Capable of handling more than one user at a time.

A;L.



48

Nanosecond. 10- second, abbreviated ns.

Rested subroutines. Subroutines that are used inside other subroutines. The nesting level is the number
of transfers of control that are required to reach a particular subroutine without returning to the main
program.

INonvolatile memory. A memory that does not lose its contents when power is removed. ROM, PROM, EPROM,
4 and EEPROM are examples of nonvolatile memory.

Object file. A file containing instructions that the computer can execute directly.

Octal. Number system with base 8. Use decimal digits 0 through 7.

Operating systemt. A comiputer program that controls the overall operation of a computer and performs such
tasks as assigning places in memory to programs and data, processing interrupts, scheduling jobs, and
controlling the overall Input/output system.

Operating code (or op code).. The part of an instruction that tells the computer which Operation to
perform.

Parity. A code used to detect recordingI or transmission errors. Parity is a 1-bit code that makes the
total number of one bits In a unit of data (including the parity bit itself) odd (odd parity) or even
(even parity).

PASCAL. A popular high-level language that was developed specifically for use with structured programming
and top-down design.

Pointer. A storage place that contains the address of a data item rather than the item Itself. That Is,
a pointer tells where the data is located.

Procedure file. A file that contains procedural instructions for a computer Program$ (e.g.. assignments
required bY an operating system or s ome other system program). A procedures file may. for example,
contain all the coimmands required to assemble or compile a program under a particular system.

Program counter. A register that contains the address of the next Instruction in memory the computer will
execute.

PROM. Progranmmable Read-Only Memory', a memory that cannot be changed during normal computer operation but
can be prograimned under special conditions. Some PROMs (called EPROMs) can be erased with ultraviolet
light and reused.

PROM programer (or PROM burner). Special equipment that Is used to change the contents of a PROM or
EPROM.

RAM. Random-Access Memory; memory that can be both read and altered (written into) during normal
operation.

Random-access. Referring to a storage device from which any data item can be removed in the same amount
of time. Semiconductor main memory is random-access, whereas a tape is not.

Real-time clock. A device that interrupts a CPU on a regular basis, such as once per second. By counting
the number of such interrupts, the computer ran keep track of elapsed time.

Records. A collection of related date item~s. Records usually consist of several fields; in turn, a file
usually contains several records.

Refresh. The process of restoring the contents of a dynamic memory before it is lost.

Register. A storage location used to hold data inside the CPU.

Relative branch. A branch instruction that causes the CPU to resume program execution after skipping over
a specific number of memory locations. The specified number, called a relative offset, may be negative

or positive.
Relocatable. Can be placed In any part of memory without changes; can occupy any set of consecutive

memory addresses.

Reset. A signal that forces a CPU to enter its startup mode.

RON. Read-Only Memory; a memory containing fixed data that is permanently defined as part of the
manufacturing process. A COU can use the Information In the RON, but cannot change it.

RS-232. A standard serial Interface defined by the Electronic Industries Association (EIA).

Serial. One bit at a time.

Serial-access (or sequential -access). Refers to devices from which data can be retrieved only by passing
through several locations between the one currently being accessed and the desired one. A tape Is a
typical serial-access device,

Shift Register. A clocked device that moves its contents one bit to the left or right during each clock
cycle.
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Single-ser. Capable of handling only one -ser at a zime.

Smart or Intelligent terminal. A terminal that has computing capability of its own and is not totally
dependent on the computer to which it is attached.

Software. Computer or microprocessor programs.

Source file. A file that contains statements written iii a computer language. A source file must be
assembled, comspiled, or interpreted before it can be executed.

Stack. A set of tasks, storage addresses, or other items that are used In a last-in, first-out manner;
that is, the last item entered is the first to be removed.

Static memory. A memory that does not lose its contents without external causes (as opposed to 3 dynamic
memory).

String. An array (set of data) consisting of characters.

String functions, Procedures that allow the programner to operate on data consisting of characters rather
than numbers. Typical functions are insertion, deletion, concatenation, search, and replacement.

Structured programming. A programsing method In which all programs consist of structures from a limited
but complete set; each structure has a single entry and a single exit to simplify debugging.

Subroutine. A program that is subordinate to another program. The process whereby the computer transfers
control to the subroutine is referred to as a subroutine call. Subroutine linkage is the mechanism used
to transfer control to and from the subroutine,

Symbol table. A table defining all the names and labels used in a program,

Synchronous. Operating at regular time intervals according to a clock.

Syntax. Rules governing the structure of language, The language may be either hum~in (natural) or a
comvputer language.

Systems program. A program that is part of the operating system.

Systems software. Programs that perform administrative functions or aid in the development of other
* programs but do not actually perform any of the computer's ultimate workload.

Task. A program that the computer can execute.

Terminal, An input/output device used to enter data into a computer and record the output; usually
consists of a keyboard and a printer or video display.

* Time-sharing. Providing service to many users by working on each person's task part of the tine.

Tap-down design. A method for designing computer. programs in which the programmner designs, codes, and
tests the overall stru,7ture first and subsequently defines parts of the structure in increasingly
greater detail.

Trace. A debugging aid that provides information about a program while It is executing. The trace prints
all or some of the intermediate results.

TTL. Transistor-transistor logic; a popular type of integrated circuit.

Universal Asynchronous Receiver/Transmitter (UART). An LSI device that acts as an Interface between

systems. It handles data in parallel as well as devices that handle data in asynchronous serial form.

Univtkrsal Synchronous Receiver/Transmitter (USRI). Like a UART but handles data in synchronous serial
* form.

User program. A program that performs a task specified by the ultimate user of the computer.

User-programmable. The user can determine the purpose of the feature by writing an appropriate program.

Utility program. A program that performs a basic systems task, such as loading and saving programs,
* initiating program execution, observing and changing the contents of memory locations, or converting

programs from one form to another.

Vectored interrupt. An interrupt that directs the computer to the specific service routine rm'quired to
respond to it,

*Video RAN. Separate memory that is used to hold information being shown on a video display.

Volatile memory. A memory that loses its contents when power is removed. Most RAM is volatile.

Winchester disk. A type of sealed herd-disk memory.

*Word. The characteristic bit length of a computer, usually the length of its data paths, registers. and Z

arithmetic unit.
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Workspace. An area of memory or backup storage assigned for temporary use. Also called a workfile.

Write protect. A feature that prevents the computer from writing into an area of memory or storage. Thisprotects the area from accidental overwriting or unauthorized changes.

APPENDIX B

INTEGRATED-CIRCUIT TENHNOLOGIES

Microprocessors and support integrated-circuit devices are made using a variety of fabrication
methods or technologies. Each of these technologies has relative advantages and disadvantages. The two
mtin semiconductor technologies are Metal-Oxide Semiconductor (NOS) and Bipolar. These terms refer to the
type of transistor used as the active element In the device. MOS devices are typically used for micro-
processors, microprocessor I/O devices, semiconductor memories, and other large-scale integration (LSI)
devices. Bipolar technology Is used in special-purpose microprocessors and in microprocessor peripheral
devices that have a p-,isary rmphasis on functional speed. Bipolar technology is also used for the

L fabrication of simple Small Scale Integration (SSI) chips used to connect microprocessor-based system
devices.

There are several variations within these two main technology groups. This Appendix provides
examples of the more popular technologies used in the design of a microprocessor-based system. Someindications of tne performance of these technologies are comparisons of average gate delay, power dissipa-tion, and speed-power product. The speed-puwar product Is a general figure of merit of the functinnal
performance. Table B-1 and Figures B-1 and B-2 represent +he general performance of the more popular
integrated-circuit technologies. The power dissipation cf CMOS devices is directly proportional to the
clock frequency; bipolar devices are not as sensitive to clock frequency.

Table B-1. Selected Integrated-circuit technologies

and performance levels.

Average Gate

Speed-Power Propagation Power
Product DelIy Dissipation

Technolog• (PicoJoules) (Nanoseconds) (Milliwatts)

BIPOLAR

Transistor-Transistor Logic (TTL)

1. Standard (STD-TTL) 100 10 10

2. Low Power (LP-TTL) 33 33 1

3. Schottky (S-TTL) 57 3 19

4. Low-Power Schottky (LS-TTL) 22 11 2

5. Advance Schottky (AS-TTL) 13,6 1.7 a

6. Advance Low-Power
Schottky (ALS. TTL) 4.8 4 1.2

Emitter-Coupled Logic (ECL)

1. MECL Il 60 1 60

2. MECL IOK 50 2 25

3. NECL IOK H 25 1 25

Integrate 4 Injectiun Logic (12L) 0.75 15 0.05

NOS

N-channel NOS (NNOS) 5 25 0.2

Complementary MOS (CMOS) 0.04 40 0.0001*

High Speed CMOS (HCNOS) 0.008 8 0.0001*S~0.5**

*Static Clock Condition"**With a 100-kHz Clock

........................ " .."..................S. , .. •; . . . . . . . -, , , • , .': . " : .. ..
" ' ' .' ; , .. .• - . " . • " : . • r i • . , ,,'•"A' !



Se.TTL N NOTE. HCMOS POWER LUM. AT 100 ME 1
to Ls.rrL STATIC P0 i< IoW

S 4 HCMOPk*

37

2 MECLIO0K

I ~~AS-Tn. MECL 10 KH M~.lI • II II

0 1 2 3 4 5 10 15 20 30 50 s0

AVERAGE GATE POWER - mW

Figure B-1. Integrated-circuit technologies and performance,

10o.0

1.0

0.1

I HCM05

o0.01 i

0.00
10 o00 l00oop Io000

CLOcK PFROUNCY IiHi)

Figure B-2, Average gete power as a function of ci€ck frequency,

W:

"--- -- +. '" .i-..w+ "" ____. _____________,. __ 1............................. ...................-+ -- --- ;... +......................

+*.,. .4

.3i.



Al-I

Annex I

AGARD FLIGHT TEST INSTRUMENTATION AND FLIGHT TEST TECHNIQUES SERIES

1. Volumes In the AGARD Flight Test Instrumentation Series, AGARDogrsph 160

1989) Publication
W. Number iteDate

2 Basic Principles of Flight Test Instrumentation Engineering 1974
by A.Pool and D.Bosman (to be revised in 1989)

2. In-Flight Temperature Measurements 1973

by F.Trenkle and M.Reinhardt

3. The Measurement of Fuel Flow 1972
by J.T.France

4. The Measurement of Engine Rotation Speed 1973
by M.Vedrunes

5. Magnetic Recording of Flight Test Data 1974
by G.E.Bennett

j, 6. Open and Closed Loop Accelerometers 1974
by I.Mclaren

7. Strain Gauge Measurements on Aircraft 1976
by E.Kottkamp, H.Wiihelm and D.Kohl

t 8. Linear and Angular Position Measurement of Aircraft Components 1977
by J.C.van der Linden and H.A.Mensink

9. Aeroelastic Flight Test Techniques and Instrumentation 1979
by J.W.G.van Nunen and G.Piazzoli

o 10. Helicopter Flight Test Instrumentation 1980
by K.R.Ferrell

11. Pressure and Flow Measurement 1980
by W.Wuest

12. Aircraft Flight Test Data Processing - A Review of the State of the Art 1980
by LJ.Smith and N.O.Matthews

13. Practical Aspects of Instrumentation System Installation 1981
by R.W.Borek

14. The Analysis of Random Data 1981
by D.A.Williams

15. Gyroscopic Instruments and their Application to Flight Testing 1982
by B.Stieler and H.Winter

16. Trajectory Measurements for Take-off and Landing Test and Other Short-Range Applications 1985
by P.de Benque d'Agut, H.Riebeek and A.Pool

17. Analogue Signal Conditioning for Flight Test Instrumentation 1986
by D.W.Veatch and R.K.Bogue
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Volume Title Publication
Number Date

18. Microprocessor Applications inairborne flight Test Instrumentation 1987
by MJ.Prickett

At the time of publication of the present volume the following volume was in preparation:

Digital Signal Conditioning for Flight Test Instrumentation
by G.A.Bever

2. Volumes In the AGARD Flight Test Techniques Series

Number TitlePublication

AG 237 Guide to In-Flight Thrust Measurement of Turbojets and Fan Eneines 1979
by the MIDAP Study Gruup (UK)

The remaining volumes will be published as a sequence of Volume Numbers of AGARDograph 300.

Volume Title Publication
Number Date

1. Calibration of Air-Data Systems and Flow Direction Sensors 1983
by JA,Lawford and KR.Nippress

2. Identification of Dynamic Systems 1985
by R.E.Maine and K.W.fliff

3. Identification of Dynamic Systems - Applications to Aircraft 1986
Part 1: The Output Error Approach

by R.E.Maine and K.W.Iliff

4. Determination of Antenna Patterns and Radar Reflection Characteristics of Aircraft 1986
by H,Bothe and DMacdonald

•5. Store Separation Flight Testing 1986
by RJ.Arnold and C.S.Epstein

At the time of publication of the present volume the following volumes were in preparation:

Identification of Dynamic Systems. Applications to Aircraft
Part 2: Nonlinear Model Analysis and Manoeuvre Design

by J.A.Mulder and J.H.Breeman

Flight Testing of Digital Navigation and Flight Control Systems
by FJ.Abbink and H.A.Timmers

Technqiues and Devices Applied in Developmental Airdrop Testing
by HJ.Hunter

Aircraft Noise Measurement and Analysis Techniques
by H.H.Heller

Air-to-Air Radar Flight Testing
by R.E.Scott

The Use of On-Board Computers in Flight Testing
by Rl..anglade

Flight Testing under Extreme Environmental Conditions
by C.L.Hendrickson

Flight Testing of Terrain Following Systems
by C.Dallimore and M.K.Foster
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Annex 2

AVAILABLE FLIGHT TEST HANDBOOKS

This annex is presented to make readers aware of handbooks that are available on a variety of flight test subjects not
necessarily related to the contents of this volume.

Requests for A & AEE documents should be addressed to the Defence Research Information Centre, Glasgow (see
back cover). Requests for US documents should be addressed to the Defense Technical Information Center, Cameron
Station, Alexandria, VA 22314 (or in one case, the Library of Congress).

Number Author Title Date

NATC-TM76-ISA Simpson, W.R. Development of a Time-Variant Figure-of-Murit for Use 1976
in Analysis of Air Combat ivManeuvering Engagements

NATC-TM76-3SA Simpson, W.R. The Development of Primary Equations for the Use of 1977
On-Board Accelerometers in Determining Aircraft
Performance

NATC-TM-77-4RW Woomer, C. A Program for Increased Flight Fidelity in Helicopter 1977
Carico, D. Simulation

NATC-TM-77-2SA Simpson, W.R. The Numerical Analysis of Air Combat Engagements 1977
Oberle, R.A. Dominated by Maneuvering Performance

NATC-TM-77-ISY Gregoire, H.G. Analysis of Flight Clothing Effects on Aircrew Station 1977
Geometry

NATC-TM-78-2RW Woomer, GW. Environmental Requirements for Simulated Helicopter/ 1978j Williams, R.L. VTOL Operations from Small Ships and Carriers

NATC-TM-78-IRW Ycend, R. A Program for Determining Flight Simulator Field-of-View 1978
Carico, D. Requirements

NATC-TM-79-33SA Chapin, P.W. A Comprehensive Approach to In-Flight Thrust 1980
Determination

NATC-TM-79-3SY Schiflett, SG. Voice Stress Analysis as a Measure of Operator Workload 1980
Loikith, O J,

NWC-TM-3485 Rogers, R.M. Six-Degree-of-Freedom Store Program 1978

WSAMC-AMCP 706-204 - Engineering Design Handbook, Helicopter Performance 1974
Testing

NASA-CR-3406 Bennett, R.L. and Handbook on Aircraft Noise Metrics 1981
Pearsons, KS.

Pilot's Handbook for Critical and Exploratory Flight 1972
Testing. (Sponsored by AIAA & SETP - Library of
Congress Card No. 76-189165)

A & AEE Performance Division Handbook of Test Methods 1979
for Assessing the Flying Qualities and Performance of
Military Aircraft. Vol. 1 Airplanes

A & AEE Note 2111 Appleford, JK Performance Division: Clearance Philosophies for Fixed 1978
Wing Aircraft
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Number Author Title Date

A & AEE Note 2113 (Issue 2) Norris, EJ. Test Methods and Flight Safety Procedures for Aircraft 1980
Trials Which May Lead to Departures from Controlled
Flight

AFFrC-TD-75-3 Mahlum, R. Flight Measurements of Aircraft Antenna Patterns 1973

AFFTC-TIH-76-1 Reeser, K. Inertial Navigation Systems Testing Handbook 1976
Brinkley, C. and
Plews, L.

AFFTC-TIH-79-1 -USAF Test Pilot School (USAFTPS) Flight Test Handbook. 1979
Performance: Theory and Flight Techniques

AFFTC-TIH-79-2 USAFTPS Flight Test Handbook. Flying Qualities: 1979
Theory (Vol.1) and Flight Test Techniques (Vol.2)

AFFTC-TIM-81-1 Rawlings, K., 111 A Method of Estimating Upwash Angle at Noseboom- 1981
Mounted Vanes

AFFTC-TIH-81-1 Plews, L. and Aircraft Brake Systems Testing Handbook 1981
Mandt, G.

AFFTC-TIH-81-5 DeAnda, A.G. AFFTC Standard Airspeed Calibration Procedures 1981

AFFTC-TIH-81-6 Lush, K. Fuel Subsystems Flight Test Handbook 1981

AFEWC-DR 1-81 Radar Cross Section Handbook 1981

NATC-TM-71-ISA226 Hewett, M.D. On Improving the Flight Fidelity of Operational Flight/ 1975
Galloway, R.T. Weapon System Trainers

NATC-TM-TPS76-1 Bowes, W.C. Inertially Derived Flying Qualities and Performance 1976
Miller, R.V. Parameters

NASA Ref. Publ. 1008 Fisher, F.A. Lightning Protection of Aircraft 1977
Plumer, J.A.

NASA Ref, Publ. 1046 Gracey, W. Measurement of Aircraft Speed and Altitude 1980

NASA Ref. Publ. 1075 Kalil, F. Magnetic Tape Recording for the Eighties (Sponsored by: 1982
Tape Head Interface Committee)

The following handbooks are written in French and are edited by the French Test Pilot School (EPNER Ecole du Personnel
Navigant d'Essais et de R6ception ISTRES - FRANCE), to which requests should be addressed.

Number Prc (
EPNER Author Title Frce nc r3) Notes
Reference French Francs

2 G.Leblanc L'analyse dimensionnelle 20 R1dition 1977

EPNER Manuel d'exploitation des enregistrements d'Essais 60 66me Edition 1970
i en vol

8 M.Durand La micanique du vol de I'hilicoptire 155 l ire Edition 1981

12 C.Laburthe Micanique du vol de l'avion appliquie aux essais en 160 Ri6dition en cours

vol

15 A.Hisler La prise en main d'un avion nouveau 50 l ire Edition 1964

16 Candau Programme d'essais pour l'rvaluation d'un hilicoptire 20 2ame Edition 1970
et d'un pilote automatique d'hilicoptire

22 Cattaneo Cours de mitrologie 45 R~dition 1982

..... , ..•... • ..........". .•.'•"...
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Number
EPNER Author Title Price (19&3) Notes
Reference French Francs

24 O.Fraysse Pratique des essals en vol (en 3 Tomes) T 1 - 160 14re Edition 1973
F.Cousson T 2- 160

T3- 120

25 EPNER Pratique des essais en vol hilicopt~re (en 2 Tomes) T i - 150 Edition 1981

T2- 150

26 J.C.Wanner Bang sonique 60

31 Tarnowski lnertie-verticale-sicuriti 50 1ire Edition 1981

32 B.Pennacchioni A6ro4lasticitd - le flottement des avions 40 1 6re Edition 1980

33 C.Lelaie Les vrilles et leurs essais 110 Edition 1981

37 SAllenic Electricitd i bord des adronefs 100 Edition 1978

53 J.C.Wanner Le moteur d'avion (en 2 Tomes) Riidition 1982
T 1 Le riacteur ............................. 85
T 2 Le turbopropulseur ............. 85

55 De Cennival Installation des turbomoteurs sur h~licopt~res 60 26me Edition 1980

63 Gremont Aperqu sur les pneumatiques et leurs propridtis 25 36me Edition 1972

77 Gremont L'atterrissage et le problbme du freinage 40 26me Edition 1978

82 Auffret Manuel de mddicine adronautique 55 Edition 1979

85 Monnier Conditions de calcul des structures d'avions 25 1bre Edition 1964

88 Richard Technologie hilicoptbre 95 Rt&ition 1971

I
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